Seminar - Graphische Datenverarbeitung

Prof. F.-E. Wolter

Leibniz Universität Hannover
Institut für Mensch-Maschine-Kommunikation Lehrstuhl Graphische Datenverarbeitung
www.welfenlab.de

February 21, 2012

Leibniz
Universität
Hannover

Topic Overview

Several topics in the following categories

- Variational Integration
- 3D Texture Synthesis
- Fluid Mechanics
- Medical Dataprocessing
- ...

The following slides show a short overview of available topics.

3D Texture synthesis

 using2D Textures

Motivation

What are 3D Textures?

- Color information in a 3D domain
- Usually a cuboid (analog to the rectangle in 2D textures)
- 3D objects can be "carved" out of the cuboid

Motivation

What is 3D Texture Synthesis?

- Creation of the 3D Texture
- Utilizes 2D Textures of the surfaces
- Calculates the inner structure

Topics

Solid Texture Synthesis: A Survey

N. Pietroni et al.

- Overview of Texture Synthesis methods
- Methods based on
(1) Neighbourhood matching
(2) Statistical matching

Topics

Solid Texture Synthesis from 2D Exemplars

Kopf et al.

- Improved Texture Synthesis methods
- Faster/Better convergence
- Utilizes histogram matching

 for
conservative systems

Motivation

$$
\mathbf{F}=m \cdot \mathbf{a}
$$

- Physical models need integration techniques
- Most techniques are either fast OR robust
- Variational integrators can solve a subclass fast AND robust

Motivation

What are conservative Systems?

- Energy conserving systems
- All force fields have a potential
- Force fields are irrotational and have no damping

Topics

Discrete geometric mechanics for variational time integrators

A. Stern et al.

- Improved integration techniques
- Use geometric properties
- Conserve momentum automatically
- Better energy behaviour without drawbacks in performance

Topics

The Jacobi-Maupertuis Principle in Variational Integrators

S. Nair et al.

- Hybrid Integrator based on
(1) Least action principle of Jacobi-Maupertius
(2) Hamilton principle

- Switch between integrators
- Use velocity as criterion

24)

 Fluid mechanics

 Fluid mechanics}for
Realtime applications

Motivation

How to simulate fluids?

- Methods are categorized into
- Lagrangian solver
- Eulerian solver
- Stochastical methods
-

.

Motivation

How to improve the simulation?

- Use more sohpisticated models
- Employ possibilities of adaptive algorithms
- Choose the right solvers

Topics

Advances in Water Resources

H. P. Langtangen et al.

- Overview of common simulation techniques
- Discretization methods
- Splitting techniques

Topics

Tall Cell Fluids

N. Chentanez ,M. Müller

- Adaptive method for eulerian discretization
- Realtime simulation possible
- Little simplification

Topics

A Multigrid Fluid Pressure Solver Handling Separating Solid Boundary Conditions

N. Chentanez ,M. Müller

- Support for out/inflow boundaries
- Realtime simulation possible!
- New method for solving the LCP problem
- Utilizes multigrid

for
Deformable objects

Motivation

"State of the Art"-Simulation of Deformable models

- Simulations are time consuming
- Deformable models require highly sophisticated models
- Algorithms must be fast
- Models shouldn't be to complex

- Difficult to find a balance (fast / complex)

Topics

Discrete Shells

E. Grinspun et al.

- Geometric motivated approach
- Simulating 2D Structurs which are
- Not stretch- / shearable
- Bendable
- Deformation based on local curvature

Topics

Discrete Elastic Rods

M. Bergou et al.

- Physical accurate model of rods
- Takes twist of rod into account
- Utilizes Frenet-Serret formulas

Fragen?

Kontakt: mklein@welfenlab.de

