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Abstract

The cut locus C,, of aclosed set A in the Euclidean space E is defined as the closure of the set containing all points p
which have at least two shortest paths to A. We present a theorem stating that the complement of the cut locus i.e.
E\(C,0A) is the maximal open set in (E\A) where the distance function with respect to the set A is continuously
differentiable. This theorem includes aso the result that this distance function has a locally Lipschitz continuous
gradient on (E\A). The medial axis of asolid D in E is defined as the union of all centers of all maximal discs which fit
in this domain. We assume in the medial axis case that D is closed and that the boundary oD of D is atopological (not
necessarily connected) hypersurface of E. Under these assumptions we prove that the medial axis of D equals that part
of the cut locus of dD which is contained in D. We prove that the media axis has the same homotopy type as its
reference solid if the solid’s boundary surface fulfills certain regularity requirements. We also show that the medial
axis with its related distance function can be be used to reconstruct its reference solid. We prove that the cut locus of a
solid’ s boundary is nowhere dense in the Euclidean space if the solid’ s boundary meets certain regularity requirements.
We show that the cut locus concept offers a common frame work lucidly unifying different concepts such as Voronoi
diagrams, media axes and equidistantial point sets. In this context we prove that the equidistantial set of two digoint
point setsis a subset of the cut locus of the union of those two sets and that the Voronoi diagram of a discrete point set
equals the cut locus of that point set. We present results which imply that a non-degenerate Cl-smooth rational
B-spline surface patch which is free of self-intersections avoids its cut locus. This implies that for small enough offset
distances such a spline patch has regular smooth offset surfaces which are diffeomorphic to the unit sphere. Any of
those offset surfaces bounds a solid (which is homeomorphic to the unit ball) and this solid’s medial axisis equal to the
progenitor spline surface. The spline patch can be manufactured with a ball cutter whose center moves along the
regular offset surface and where the radius of the ball cutter equals the offset distance.
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1 Introduction

The Media Axis Transform in short (MAT) was introduced by Blum in [1] more than 20 years ago. Since then, a
great deal of research has been done on the MAT, see the literature review in section 2. Initially the research
performed on the MAT has mainly been from the vantage point of understanding how it can be useful for pattern
recognition (see[2]). During the past five years the MAT concept has been employed in Computer Aided Design
and Manufacture for:

« global shape interrogation
« global shape representation
« automated meshing algorithms

Although there exists extensive literature on the MAT which discusses mainly computational methods in a variety of
practically relevant cases, basic global and even basic local aspects of the MAT concept are not sufficiently well
understood. Here, for instance, the relations between the homotopy properties of an object and the homotopy
properties of its MAT have not yet been systematically analyzed. Although it has been claimed occasionally (cf. eg.
[2]) that the medial axis of a domain bounded by a simple closed curve is simply connected, there does not seem to
exist any proof for this statement. Even in the planar case, there does not seem to exist any result discussing if the
medial axis is in general connected. This is a severe gap because those topological relations often motivate the
relevance of the medial axis for global shape interrogation and representation. Moreover, intuition frequently offers
no immediate clue telling what conjectures are true. Therefore, in order to deduce correct results and construct
proper proofs one has to utilize tools of topology and global differential geometry. Until now, the research activities
performed in the whole MAT area have mainly focussed on computational techniques, and one misses a
systematical foundational investigation of the concept as a whole. One of the main goals of this paper is to help fill
this gap, and also to supply a systematical analysis of the above mentioned topological properties. In our effort to
make a systematical analysis of the foundations of the MAT concept we investigate its relation to the concepts of cut
loci, equidistantial sets, and Voronoi diagrams. We show that the cut locus concept offers a common frame work
lucidly unifying different but related concepts such as Voronoi diagrams, equidistantial sets and medial axes. We
want to point out that the distance function and its differentiability properties play a crucial role for many
considerations in this paper.



There is one aspect which makes the MAT problem particularly interesting for the research in Computer Aided
Geometric Design, namely the fact that it requires and integrates difficult intersection computations, offset
computations and distance function computations. Therefore MAT computations are a challenging test bed for the
most fundamental tools in geometric modeling.

This paper is structured as follows. In section 2 we give a survey of previous work on the medial axis. In section 3
we present definitions, characterizations and various various local results for Cut Locus, Medial Axis, equidistantial
sets and VVoronoi sets. In subsection 3.2 of section 3 we show that the cut locus avoids certain reference sets and we
draw conclusions from this result among those that offset surfaces of a spline patch are Cl-smooth for sufficiently
small offset distances. In subsection 3.3 we investigate the relation of the cut locus to equidistantial setsand Voronoi
diagrams. We show that the cut locus concept offers a common framework unifying different concepts such as
Voronoi diagrams, equidistantial sets and medial axes. We show that the equidistantial set of two digoint setsis a
subset of the cut locus of the union of those two sets. We also prove that a Voronoi diagram is the cut locus of a
discrete point set In section 4 we present global results on the medial axis. We prove in subsection 4.1 that under
appropriate assumptions for a solid’s boundary the medial axis has the homotopy type of its enclosing solid. In
subsection 4.2 we show that the medial axis can be used to reconstruct the engulfing solid. The appendix contains
two lemmata. The first is used as a crucial part for the homotopy result in subsection 4.2. The second describes
properties of cut locus pointsif the reference set is a closed surface being the union of planar facets.

2 Survey of PreviousWork on the Medial Axis

The concept of the equidistantial point set with respect to two reference sets is basic for the concepts of cut locus,
medial axis and Voronoi diagrams. The concept of the equidistantial point set is as old as geometry. Euclid used
the concept of the equidistantial point set of two distinct points or straight lines in the plane. Apollonius defined the
parabola as the equidistantial point set of a point and a straight line in the plane. The concept of equidistantial loci
in the context of discrete point sets goes back at least as early as the work of Voronoi [50], his name being usually
associated with the concept of a Voronoi diagram. The concept of the Cut Locus of a single point on a surface is
due to Poincare [38], which he called in French "ligne de partage”. However prior to Poincare the concept of the cut
locus of a point on a surface occurs at least implicitly in Mangoldt’'s paper [27]. There has been alot of work in
Riemannian Geometry using the cut locus of a single point in particular for the investigation of geodesics and
positively curved Riemannian manifolds, for an overview see e.g. [41], [18], [52] and the lists of references given
there. The concept of the Medial Axis Transform (which is aso called symmetric axis or skeleton) appears to have
been introduced first by Blum in[1] as a method to describe and recognize biological shape, see aso Blum's
extensive article [2].

There exists a considerable body of literature on agorithms to compute the media axis of a planar polygonal
domain or of a planar domain bounded by circular arcs and polygons see e.g. Montanari [29], Preparata[39], Lee
and Drysdale [21], Lee[22], Yap [53], Gursoy [8], Patrikalakis and Gursoy [35]. The amount of research done in
the three dimensional case is smaller. Here we have the work of O’ Rourke and Badler [33]. Mativated by work of
Blum and Nagel [3] in the planar case, Nackman was the first to derive curvature relations between the curvature of
the media axis axis surface and the curvature of the boundary surface see Nackman [30] and Nackman and Pizer
[31]. More recently, Hoffmann[12], [13] and Dutta and Hoffmann in[6] compute equidistantial curves and
surfaces. Nackman and Srinivasan [32] investigate bisectors of linearly separable sets. Hoffmann and Vermeer
[14] present systems of equations defining equidistantial curves and surfaces where they eliminate extraneous
solutionsin curve and surface operations.

The author introduced the concept of the cut locus for arbitrary closed sets in a Riemannian manifold with and
without boundary [52]. Motivated by his work in[51] he could show that even under those very genera
assumptions and under the weak requirement of Lipschitz continuity for the Riemannian metric the cut locus can be
characterized through differentiability properties of the distance function, cf. [52]. As a specia case see also theorem
2 in this paper.

During the past five years there has been an increasing interest in the media axis area by researchers involved in
geometric modelling and computer aided design, analysis and manufacture. There are severa reasons for this. First



the medial axis appears to be useful for the extraction of gross features of a two or three dimensional solid cf. e.g.
Rosenfeld [42], Patrikalakis and Gursoy in[34] and [35]. Further the medial axis appears to be an appropriate
preprocessing tool for automated finite element mesh generation on topologically complicated two and three
dimensiona domains, cf. e.g. Srinivasan, Nackman, Tang, Meshkat in [49], Gursoy [8], Gursoy and Patrikalakis in
[9]. Thisrelevance as an appropriate preprocessing tool for topologically complicated domains is corroborated by
the observation that numerical medial axis computations of complicated two dimensional solids yield objects which
have the homotopy type of the enclosing domain e.g. the same number of holes, cf. Srinivasan, Nackman [48] and
Gursoy [8]. Held [10] develops and applies the concept of equidistantial point sets and Medial Axes and Voronoi
diagrams in numerical control 2.5 D machining applications. Held's book [10] as well as the thesis by Gursoy
[8] provide extensive references in this general area and its applications. More recent references of related interest
pertaining to the area of global shape interrogation in CAD/CAM are the following ones [16], [23], [24], [25], [26],
[37], [46], [54].

3 Definitions, Characterizations and Local Resultsfor Cut Locus, Medial Axis,
Equidistantial Setsand Voronoi Sets

3.1 Review of some Concepts used in the Paper

To make the paper self-contained and more easily readable we review here some concepts from point set topology,
differentiable manifolds and analysis which are used very often in this paper. We don’t give the most general
definitions of the concepts, but explain only the meaning within the scope of this paper. For more background on
point set topology see e.g. Hu[15] or Kelley [17], for algebraic topology and differential topology see eg. Spanier
[47], Massey [28] or Guillemin and Pollack [7], Hirsch [11] respectively.

An open subset G of R"is characterized by the property that for every point x 0 G there exists a positive number €
such that the disc {yOR"||x - y| < €} iscontained in G. Theinterval (0,1) ={sOR|0<s< 1} isan open subset of
RL

A point ¢ isalimit point of aset COR"if there exists a sequence of points x, 0 C converging to g. A set may not
contain all its limit points eg. the point 0 is a limit point of the interval (0,1) but O is not contained in (0,1). A
closed subset C of R"is characterized by one of the two equivalent properties:

1) The set Cincludes all itslimit points.

2) The complement R"\ C is an open subset of R™.

Thesets{sOR! |0< s}, {(xy) OR?| 0< x, 0<y} areclosed subsets of R}, R, respectively.

A subset BOR"iscalled bounded if B is contained in some finite disc {yOR"| |0 - y| < d} with radiusd. The sets
(0,1), { sOR| 0< s} are bounded and unbounded subsets of R! respectively.

A subset K of R"is _compact if and only if K is closed and bounded. Hence the set {SOR | 0< s< 1} is compact
while both of the sets {sOR|0<s}, {sOR]|0<s<1} are not compact. Compact sets have the property that
continuous real valued functions attain a finite minimal and maximal value on them.

A subset D of Sis dense inthe set Sif every point in Sis alimit point of D. The rational numbers are a dense
subset of the real numbers because every real number can be approximated by a sequence of rational numbers. A set
AOR"is nowhere densein R"if D is not dense in some n-dimensional disc { xOR"| [x—q|<¢}. Lettheset Abea
subset of R". A function f : A — R"is continuous in some point ¢ A if for any sequence of points g, 0 A with limit
point g the sequence of function values f(q,,) has the limit point f(q). Let A, B be subsets of R", R™ respectively. A
function f: A - B is a homeomorphism if the function f is continuous and has a continuous inverse. Two subsets

A, B of R, R™ respectively are called _homeomorphic or are said to have the same homeomorphy type if there
exists ahomeomorphismf: A - B.

An unbordered, k-dimensional topological submanifold S of R" (with 0 < k < n) is characterized by the property that
for every point qOS there exists a positive number € such that for the disc K%(q,e) ={ xOR"| |[x-q|<¢€} the




intersection K°(q,€)nS containing g ( and being a neighborhood of g in S ) is homeomorphic to RK. A
k-dimensional topological submanifold Swith boundary dS is characterized by the properties that:

1) For every boundary point p[d Sthere exists a positive number & such that the intersection K°(p, €)n S containing
p (and being a neighborhood of the boundary point p in S) is homeomorphic to the k-dimensional halfspace
HX = { (X, .., %) OR¥| , = 0}.

2) The set SdS is nonempty and for every every point g SdS there exists a positive number & such that the
intgksection K%, d)n Scontaining g (and being a neighborhood of the non-boundary point qin S) is homeomorphic
to R".

The sets  Op ={(Xy, % X3) OR®| [%;|<1, X, =%3=0}, O, ={ (X1, X0, X3) OR®| [x2 +%,2| <1, %3=0},
O3 ={(Xy, X0, X3) OR®| [x,2+X,2 + X32| <1} are one-, two-, three- dimensional submanifolds of R® respectively,
and dl three of those submanifolds have no boundary. The sets B; = {(X{, X5, X3) [ R3| X1 <1, X,=%3=0},
By = {(X0, X0 Xg) OR®| X2+ %,2| <1, X3 =0}, By ={(X;, %, X3) OR®| [x,2+X,2 +X,%| <1} define bordered
1 one, two- and three dimensiona submanifolds of R3 respectively. Their boundaries are
0B, ={(x;,0,0) OR®||x,| =1}, 0B, ={ (X}, %, 0) OR®| |2 +x,2| =1},
0B3 = { (X, X5 Xg) OR3| [x)2 +%,2 +x32| =1} where 0B,, 0B represent a unit circle and a unit sphere in R®
respectively.

Let A be any subset of R". Any function f: A -~ R™ is Lipschitz continuous on A with some Lipschitz constant L if
for al points x,y(OA we have |f(x) —f(y)| < L |[x—y|. It is easily seen that a Lipschitz continuous function is
continuous in al points of its domain of definition. However a continuous function need not be Lipschitz
continuous, an example being the function f(X) = +Vx defined on the interval [0,1] ={0<x< 1}. All C%smooth
rational B-spline functions are Lipschitz continuous. A function f is locally Lipschitz continuous on a domain D if
for every point p 0 D there exists anumber € such that the function f is Lipschitz continuous on DnK°(p, €).

The notation CK - smooth will refer to functions which have continuous partial derivatives of order k. The notation

ck1 - smooth will refer to functions which have Lipschitz continuous derivatives of order k. The functionf:R - R
defined by f(x) = 0 for x < 0 and f(x) = x2 for x = 0 is C1-1-smooth but not C2 smooth. All rational B-spline functions
(with simple knots) of degree k in each parameter are Ck“1-smooth.

A k-dimensional, C'-smooth submanifold S of R" is a k-dimensional, topological submanifold of R" with the
property that for every point p 0 R" there exists a positive number € such that:

There exists a homeomorphism h: D ={xORK| [0-x|<1} - SnK°(p,e) with pOh(D); the map h has
continuous partial derivatives of k -th order on D and the Jacobian matrix h'(X) has rank k every whereon D .
Any C'-smooth k-dimensional submanifold S; of R can be locally represented by solutions of (n-k) (generally

non-linear) equations described by n—k C'-smooth functions. This means for every point xJ S, there exists an open
set U in R" and a C™-smooth function e: U — Rk whose differential has rank n—k on all U and xO Uns, = e 1(0).

Using the implicit function theorem (cf. e.g. [5] ) it is easily seen that for any open set U O R" and for any C'-smooth
function e: U — R"™K whose Jacobian € has rank n — k on all U the preimage set € 1(0) defines a n - k dimensional
C'-smooth submanifold of R".

We also need to explain smooth functions defined on submanifolds which are not open subsets of R". For thislet S;
be any CX-smooth m-dimensional submanifold of R". A continuous map f:S, - R¥is C'-smooth if for every point
xOS, there exists a positive number € and and a Ck-smooth homeomorphisms h:K(0,1) - K(x,€)n S,
xOK(x,g)nS; with the Jacobian h'(2) of rank w on all K(0,1) such that the composition map foh:K(0,1) — R¥ is

C'-smooth on all K(0,1). The differential of map f has rank w at x if at the preimage point z=h1(2) the Jacobian
(foh)'(2) has rank w. Let S, be any Ck- smooth m-dimensional submanifold of R" and let S, be any C'- smooth

m-dimensional submanifold of RY then a map f:S, - S, isa_C'-smooth diffeomorphism if f is a homeomorphism
and if the map f aswell asitsinverse f~1 are both C'-smooth. These conditions are already fulfilled if the map fisa

IWe are using the terminology bordered manifold as a synonym to manifold with boundary.



C'-smooth homeomorphism whose differential has rank mon al S;. Two smooth submanifolds S, S, of R",R™
respectively are _C'- diffeomorphic if there exists a C'-smooth diffeomorphism f:S, -~ S,. The mappings

P(x0,1) =(x3,1), ex,0,1) = (x,1) define homeomorphisms between the two C®-smooth submanifolds
S ={(x0)OR*|xOR}, S,={(x1)OR?|xOR} of R® R? respectively; here the map @ is a C®-smooth
diffeomorphism, while s is not even a C1-smooth diffeomorphism. Note that the inverse §~1 is continuous but not
locally Lipschitz continuous, due to the fact that the Jacobian ('(0,0) =0. Let St denote the unit circle being a
C®-smooth submanifold of R2.  Let r(xy),y(xy) be polar coordinates in R The map B:S' - S with
B(xy) = (cos(2y(x,y) ), sin(2y(xy))) is C®-smooth and its Jacobian has maximal rank on all St. Thismap B islocally
invertible this means here that a mapping defined by restriction of B to any sufficiently small subarcs? St yields a
diffeomorphism onto the image set of the small subarc. However 3 has not the globa property to be a
homeomorphism. Let S;={(x0)OR? |xOR}, S, ={(x,f(x))OR?|f(x) =0 for x<O0, f(x)=x? for x=0}. The
map Q(x) :S;—» S, provides a Cl-smooth diffeomorphism between both submanifolds of R2. However both

submanifolds are not C2-diffeomorphic submanifolds of R2. Note also that the fact that a submanifold is
diffeomorphic to some other submanifold does not say much on how complicated any of those submanifolds has
been embedded in a Euclidean space. For instance a knotted curve K in R3 is a submanifold of R3 diffeomorphic to
the unit circle in R3, however the curve K may be embedded in a complicated way into the ambient space R3. Note
in this context that a diffeomorphism (or homeomorphism) between two submanifolds S;, S, of R" need not be
extendable to a diffeomorphism (or homeomorphism) of R" to itself. An example for this situation is provided by a
closed knotted curve K in R3. The curve K is diffeomorphic to the unit circle in R®, however no homeomorphisms
between K and the unit circle in R3 can be extended to a homeomorphism of R3 to itself, see e.g. Hirsch [11].

We shall use also one-dimensional piecewise smooth submanifolds of the Euclidean plane R2. A piecewise possibly
disconnected one-dimensional Ck-smooth submanifold S is a topological submanifold of R with the subsequent
additional property:

For every point pJ S there exists a positive number € and a homeomorphism® h(t): (-1,0]0[0, 1) — SnK°(p, )
such that pOh( (-1,0]0[0,1) ) and each of the functions h: (-1,0] — R2, h:(0,1] - R?, is CK-smooth and has
non-zero first derivative on its respective domain of definition (-1,0], [0, 1).

Note that, the two paths h( (=1,0] ),h( [0,1) ) will generally not have collinear tangents at the vertex point h(0).
Polygons which are free of self-intersections can be used to get one-dimensional piecewise C*-smooth submanifolds
of R Another example covered by the definition is given by the union of the two subsequent paths
{t,2)OR?| 0<st<oo} ,{(t,0)OR?| 0<t<c} .

3.2 Definitions, Characterizations and L ocal Properties of the Cut L ocus and the Medial Axis

The MAT of aclosed planar region B bounded by a curve has been defined by Blum to be the union of the centers
of all maximal discs (which fit inside B) together with the radius function, defining the radius of a maximal disc for
apointin M(B). Therefore, in the sense of Blum

Definition of the MAT: The MAT of aplanar region B isareal valued function
r:M(B) - R

together with its domain of definition M(B); the set M(B) O B iscalled the medial axis or symmetric axis or skeleton
of B. A point p B iscontained in M(B) if and only if there exists a closed disc
K(p.r(p)
with center p and radius r(p), which is not contained in alarger disc W with

K(p,sr(p) O W O B.

Blum defined the MAT concept initially for a domain in the Euclidean plane. We will generally assume that the set

2A subarc of length smaller than Ttis sufficiently short.

3We shall often use the notation (-1, 0], [0,1) for theintervals{ sSOR| -1<s<0}, { sSOR| 0<s< 1} respectively.



B is a bordered n-dimensional submanifold of the n-dimensional Euclidean space. For some of the results in this
paper we need to make specific continuity requirement for the boundary 9B like e.g. being a piecewise C2-manifold.

Redefinition of the MAT: Note that we extend Blum’'s MAT definition in the following way:
» Weinclude in the medial axis M(B) aso all limit points of all centers of all maximal discs.

» We redefine the preceding function r : M(B) — Rby r(p) =d(p,dB) i.e. r(p) isthe distance of the the point p to
the boundary 9B.

This yields a well-posed definition of the function r(p) also in case the point p is a limit point of centers of maximal
discs in B. This redefinition yields a continuous function r: M(B) — R and Lemma 2 below will prove that this
redefinition of r(p) is consistent with the preceding one. Namely this holds by Lemma 2 because if a point p is a center
of amaximal disc K in B then the radius of K equals the distance of p to the boundary 0B.

We explain now why the redefinition of the function r:M(B) — R is important. For this note that in case the
boundary B is only a Cl1-smooth manifold then alimit point p, of centers of maximal discs need not be a center of
amaximal disc in B. Hence for such alimit point p, the function value r(p,) cannot be defined as the radius of the
maximal disc in B with center p, as p, need not be center of a maximal disc. However we need to assign a value to
r(p,) if we want to include limit points into the medial axis transform concept.

Example 1: We explain now an example of a planar domain with C11- smooth boundary where a limit point of
maximal disc centers is not a center of a maximal disc in the domain. For this purpose we define the function
f:R - R by f(X) = (1/2) x*sin(2/x) if x>0 and f(x) = 0 for x< 0. The domain B is defined by all points above the
graph of the function f(x) i.e. the set B={(xy) ORZ|y=f(x)}. The function f(x) is C1-1-smooth. For x > 0 the first
and second derivative of f(x) ae given by  f(X)=23sin(2/x) - x?cos(2/x) and
f"(x) = 6x2sin(2/x) — 4xcos(2/x) — 2sin(2/x) respectively. The function f(x) has infinitely many local minima on
each interval between O and any positive number. Let x, be such a minimum. Let Ra be a ray which starts at
Xy f(X) ). We assume that Ra is parallel to the y-axis and that Ra points into the domain B. The ray Ra contains a
curvature center ¢, which is located arbitrarily close to the axis {(x,y) |y = 1/2} if x, is sufficiently small; the point
C,, is a curvature center respective the point (X, f(x,)) on the curve x - (x,f(x)). It can be shown that those
curvature centers ¢, are centers of maximal discs respective the domain B. This claim can be verified by elementary
estimations®.- With X, converging to 0 the corresponding sequence of maximal disc centers has alimit point | on the
y-axis precisely | =(0,2/2) . This point | cannot be a center of a maximal disc in B because the (candidate) disc
K(1,0.5) (with center | and radius 0.5 ) is subset of the larger disc K((0,1),1) (with center (0,1) and radius 1 )
which is easily shown to be contained in B. The claim that the disc K((0,1),1) is subset of B follows from the
subsequent inequalities which can be easily verified:

For 0sx<1 is 1-V1-x22(1/2)x2= (U2)x*sin(1/x) 1)

Similarly if K((0,1),1) is subset of B then no point in { (0,y) | 0<y <1} can be center of a maximal disc in B.
Therefore the two-dimensional bordered submanifold BOR2 (with 9B being Cl1-smooth) contains centers of
maximal discs with some limit point not being center of a maximal disc in B. This establishes the properties
claimed for our example. Note that if one would modify the example 1 by replacing sin(2/x) with sin(d/x) in the
definition of f(x) then the curvature radius would approach the value (1/2) 8 and the limit of centers of maximal
discs would be located at the point p = (0, 1/282). Like in the unmodified example this point p would not be center
of amaximal disc. This modified example alows to place the point p arbitrarily close to the boundary of the planar
domain namely within a predifined arbitrarily small distance (1/2) 52.

As we shall see later in theorem 1, the medial axis is a special subset of the cut locus concept studied in[52].
Therefore, we can successfully apply results from [52] in this context. For this we introduce the following notation:

“Note that the ray Ra cannot be a distance minimal path to 0B after the ray has passed through ¢, Therefore the segment seg of Ra bounded
by the two points ¢, (X, f(x,)) must contain a non-extender point explained in the definition below. By lemma 1 below, a non-extender is a
center of amaximal disc. Therefore the segment seg contains a center of a maximal disc. Those centers of maximal discs must have some limit
point on the y-axis between the two values 0, 0.5.



Definition: A point p O R"is called non-extender relative to the closed set A, if there exists aminimal join from A
to p which cannot be extended as aminimal join beyond p.

Example: The midpoint of the unit circle S is a non-extender relative to St in the Euclidean plane R2.

Using a simple estimation employing the triangle inequality it is easily seen that the preceding definition of a
non-extender point yields immediately the subsequent corollary.

Corollary 1: If apoint qJR"is a non-extender with respect to some closed set A R" then no minimal join from A
to g can be extended distance minimally beyond g.

Using the concept of non-extender points we define next the cut locus with respect to areference set.

Definition : The cut locus C, of aclosed set A O R" is then defined as the set of all non-extenders relative to A
together with all limit points.

We want to give a result which relates the cut locus with the medial axis. For this purpose, we need to explain for
what kind of sets B in R" we want to define the medial axis. Note while we have defined the reference set A for the
cut locus to be very general namely any closed set® we shall be more restrictive for the reference set B of the medial
axis. Unless stated otherwise, let us from now on assume that B is always a closed bordered n-dimensional
topological submanifold of R" assume that the non-empty boundary 0B of B is a n—1-dimensional topological
manifold.

The preceding conditions imply

Proposition 1. The boundary 0B separates B and its complement R"\ B. This means if we join any point p O B with
any point g O (R"\B) by acontinuous path c(t) : [0,1]] - R"

where c(0) = p, ¢(1) = g, then there existsat [0 [0.1] such that c(t,) [0 B.

Proof of Proposition 1 : We argue by contradiction. Therefore we assume that the whole path c[0,1] does not meet
the boundary 0B. Hence c[0,1] is contained in RMdB. Thus c[0,1] O (B\dB)O(R™\B). Therefore the interval [0,1] is
represented by the subsequent union of two preimage sets ¢ (B\dB)Ic1(R™B). As (B\dB), (R\B) are both open
setsin R" their preimage sets ¢1(B\dB), c"}(RM\B) are open sets as well because the map c(t) is continuous. Clearly
those two preimage sets are also digjoint i.e. ¢ {(B\dB)nc™}(R™\B) = O because (B\0B)n(R\B) = 0. The two
preimage sets are both non-empty because 00 ¢™1(B\dB) and 10c¢ X(RM\B) as by assumption ¢(0) 0 (B\dB) and
¢(1) O(R\B). This means that the interva [0,1] can be represented by the union of two open, digoint, non-empty
sets ¢ }(B\dB), c™}(RMB). This implies that the interval [0,1] is disconnected (cf. eg. [15]), a contradiction. This
proves proposition 1.

Under the above stated assumptions for B, we can conveniently characterize the medial axis as a subset of the cut
locus. Namely we have:

Theorem 1. (Medial AxisasInterior Cut Locusof a Solid’s Boundary)

Let B be a closed bordered n-dimensional topological manifold of the n-dimensional Euclidean space and
assume that 0B is a topological n—1-dimensional manifold. Then the medial axis M(B) equals the subset
of the cut locus C;5 which is contained in B, i.e. M(B) = C;gn B.

In other words, the medial axis of a solid B is that subset of the solid's boundary cut locus which is contained in the
solid. Theorem 1 is a consequence of the combination of the subsequent Lemmata 1 and 2.

Lemma 1: (A non-extender isa center of amaximal disc)

5A closed set may be completely disconnected and may have many components being isolated points, isolated curves and surface pieces.



If OB is a topological n—1-dimensional manifold being boundary of a closed solid body B in R" then apoint g O B
being a non-extender respective 0B is a center of amaximal disc contained in B.

Proof of Lemma 1 : There exists a minima join s; from dB to . This segment s, is distance minimal from the
boundary 0B to g and s; and joins some boundary point p; [d B with g. Thus,

d(q,0B) =d(q,p;) @
By assumption of thelemma 1 's; cannot be extended distance minimally beyond g. We claim that
the disc K (g, d(p, ,0)) isamaximal disc contained in B. ©)

In order to show (3) wefirst prove

In order to prove (4) we argue by contradiction. Namely assume K(q,d(p,,g)) contains a point wOR™B. Join g
with w by an arc-length parametrized Euclidean segment c(t) with ¢(0)=q, c(d(q,w))=w. By proposition 1 the
segment c(t) necessarily meets the boundary 9B in a point c(t,). The point c(t,) # c(d(g,w)) =w aswOR"B is
not on the boundary dB. Therefore

d(q,0B) < d(q,c(t,)) < d(q,w) < d(a,p,) ©®)
acontradiction with (2). This proves (4). The next claim we want to establish is that:

K(g,d(p,,0)) isamaximal disc contained in B. (6)
To prove (6) we have to show that:
K(q,d(py,0)) isnot contained in any disc

K(g,r)dB (7
with r > d(p;,9).

To prove (7) we argue by contradiction. Namely assume that (7) is not true. Then there would exist adisc

K(qg,r) OB with r > d(p;,q)

andK(q,d(py,0)) OK(g,r) (8)
We show now first that in this case
r=d(dpy) ©

Clearly r > d(q, p;) because otherwise (i.e. if r <d(q,p;) ) the point p; would not be contained in K(q,r) and this
would yield a contradiction with the assumption

madein (8). Therefore in order to establish (9) it remains to show

r < d(a,py) (10)

In order to show (10) we need the subsequent assertion:

Any arbitrarily small disc K(p,,€)contains points of R"\ B (11)
The claim (11) holds because p, isin dB. To make the latter reasoning for (11) formally precise we derive now a
contradiction from the negation of (11) which will prove (11). For this note if K(py,e)0B then
KO(py,e/2)={xOR"| |x-p;|<€/2} would be a neighbourhood around p; in B. Now KO9(p;,e/2) is
homeomorphic to R" and not homeomorphic to the halfspace H"={ (x1,...x" / x}1 2016, However (if B is a

61t isawell known result from algebraic topology that R" and H" are not homeomorphic, see e.g. [45], [47]



bordered manifold then ) a boundary point p;[@ B cannot have a neighbourhood UOB with U being
homeomorphic to R". This yields arigorous argument for (11).

Using (11) it is now easy to establish (10). Namely assuming r > d(q, p, ) we conclude that there exists a positive
number € such that:
K(py,€)OK(a,r) (12)

Thus, by (11) K(g,r) must contain points of R"\B a contradiction with the assumption K(q,r) OB in (8). This
shows (10) and completes the argument for (9).

After this intermediate step we proceed now with the proof of (7). Denote with S(Q), S(q) the spheres being the
boundaries of the discs K(q,r), K(q,d(p,,0)) respectively.

Assume now that the center gof K(q,r) is not contained in the extension of the ray z which starts at p; and passes
through g.” Then the two spheres S(q), S(¢|) either intersect transversally at p, or they have only the point p, in
common. In both cases there exist points on S(q) 0 K(q,d(p;,q)) which are not in K(g,r), hence a contradiction
with the assumption K(q,d(p;,q))0K(q,r) in (8). Therefore g must be contained in z. Let the ray z be
parameterized by arc length z(t) with z(0)=p,. There must exist anumber T such that z(t) =q. Clearly t =r . We
want to prove that

t =d(p;,q) (13
Now if T <d(p;,q) then K(g,r) could not include all points of K(qg,d(p;,q)) a contradiction with (8). Therefore
t > d(p;,q). Thus, it remains to exclude the possibility that

t>d(py.q) (14)
For this we argue again by contradiction and we assume that (14) istrue, hence there exists a positive number & such
that

T=d(p,q)+3. (15)
Now K(z(f),r) =K(q,r)OB. Therefore with considerations similar to the one proving (11) above we find that the
open disc

Ko(Z(d(p;, a) +8),r) ={ x ORY/|x~ Zd(py,q) + 3) | <d(py, q) + &
contains no points of the boundary 0B. Thus

d(0B,z(d(p;. @) + 8) ) 2d(py, @) + 0 (16)

Therefore the segment Z; ={zt)/0<t=<d(p;,q) + 8} isdistance minimal from q = z(d(p;,q) + d) to the boundary
0B. This segment z contains q=2zd(p;,q)) as an interior point. Thus the minima join
sq:{ Z(t)/0<t<d(p;,q) } going from from 9B to g can be extended as a minima join beyond g. Thisis a
contradiction with the assumption stated in lemma 1 that q is a nonextender with respect to the boundary 0B.
Therefore it disproves (8) and shows (7). This proves (6) and completes the proof of lemma 1.

Lemma 2: Let B be a closed solid body in R" with boundary 9B a topological (n-1) dimensional manifold. Let
K(q,r), r > 0 beamaximal disc contained in B. Then the center g of this disc is a non-extender respective dB and the
radiusr = d(q, dB).

Proof of Lemma 2 : The proof is performed in two steps. In the first step we prove that there exist boundary points
nearest to q and that all those points are located on the boundary of the disc K(q,r), i.e. they al have distancer to q.
Thereforein the first part of the proof of step 1 we show that:

"Theray z is an extension of the interior normal of the sphere (q).
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Thereexistsapoint p [P B with d(q,p) =d(q,dB). an
The second claim in step 1 can be rephrased by the conclusion:
If g Bwith d(p,q) =d(p,0B)then d(p,q)=r (18)

In the second step of the proof of lemma 2 we shall show that the assumption g being an extender respective 0B can
be used to disprove the maximality condition in lemma 2. In other words we show if q is an extender respective 0B
then we can find adisc D contained in B where D contains also K(q,r) as a proper subset. Thus, step 2 will establish
lemma 2.

We show now the claims of step 1. The distance function x - d(q,x) is continuous and the boundary 0B is
compact. Therefore the distance function attains its minimum in some boundary point p [d B. This proves (17).
We show now (18). For thiswefirst prove that

d(p,q)=r (19

Assume the contrary of (19) then there exists apoint of 0B in K°(q,r) ={yOR"/|y—q|<r}. Thisimpliesusing the
argument for the proof of (11) that there exist points of R" \ B in K°q,r). This yields a contradiction with the
assumption of the lemmathat K(q,r) OB . Thisshows (19). Next we prove

d(p,q)<r (20)

For this assume d(p,q) >r ; then there exists a positive number € such that K(q,r+ €) contains no points of dB.
Thisimplies that

K(q,r+ €) contains no point eJR™\ B (21)

because otherwise by Proposition 1 the Euclidean segment joining q OB with e(d R"\B would meet B in K(qg,r+
€). Thiswould yield a contradiction with the preceding statement that K(q,r+ €) contains no points of dB. This shows
(21). Now (21) implies that K(q,r+ €) is contained in B. This is a contradiction with the assumption of the lemma
that K(q,r) isamaximal disc contained B. Thus we disproved d(p,q) >r and have shown (20). This completes the
proof of (18) and establishes the claims contained in the first part of the lemma’s proof.

We give now the argument for the second step of the lemma’ s proof. For this let c(t) be an arc length parametrized
Euclidean ray which starts at the boundary point p described by (17) and passes through g, hence c(0)=p and c(r)=q.
It follows from (18) that the segment ¢([0,r]) is a distance minimal join from 0B to the point q. Assume now that g
is an extender with respect to dB. Then there exists a positive number & such that c([O,r+ d) is a distance minimal
jointo 0B. Thisimplies obviously that

DO =KO(c(r+0),r +8) ={y O RY/|c(r+d) —y|<r + &}
contains no points of 0B (22)

for otherwise c([0,r+ 9]) could not be distance minimal to dB. Using the argument which proved (21) together with
(22) onefinds that

D =K(c(r+d),r + d) contains no points of R"\ B (23)

Note if D would contain a point w of R"\ B then an arc-length parametrized segment g joining c(t+d) with w would
meet 0B in an interior point x of g because x # w as X is not in R\ B. Since the boundary point x is an interior point
of g this point x must bein D° a contradiction with (22). This consideration yields a formally complete argument for
(23). Therefore D iscontained in B. Also D obviously contains K(q,r). Thisyields a contradiction with the lemma’'s
assumption that K(q,r) isamaximal disc contained in B and completes the proof of lemma 2.

Remark : Analyzing the preceding proof one finds that the key properties used in the arguments are :
« that the boundary 0B separates the interior of the solid B from its complement R™\ B;

* subsets of the boundary 0B which are contained in any closed bounded disc are compact.
We used in our lemmata 1 and 2 that Both of those itemized properties will hold not only if B is compact but also in

case the solid B is a unbounded, closed, bordered n-dimensional submanifold of R", with the boundary B being an
n—-1-dimensional topological manifold which may even have infinitely many unbounded components.
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Based on these considerations one can obviously define the concept of an exterior medial axis with respect to the
solid B as the centers of all maximal discs which are contained in (R"\B)i@ B. Analogue to theorem 1 this exterior
medial axis can now be characterized also as that subset of the cut locus Cyg which is contained in (R"\B)@ B.

Next we give a series of results which explain mainly local properties (or the local nature) of the points in the cut
locus (which agrees in B with the medial M(B) by Theorem 1). To simplify some of the statements in the results
below, we introduce a name (notation) for a specific non-extender called pica

Definition : A pica g with respect to a closed set A is a point which has at least two nearest neighbors on A, see
Wolter [52].

The proofs of results in this paragraph as well as the proof of our global topological shape theorem in the next
section makes use of the subsequent Theorem 2 which holds under very weak general assumptions. We state now a
simplified (weakened) version of this result in[52]. In this version, we require the set A to be a closed, possibly
disconnected, subset of R". Under these assumptions, we have:
Theorem 2: (Characterization of the Cut Locusof a Closed Set A in R™)
 A) The picas with respect to A are densein C,. Hence the cut locus C, consists of those points
and their limit points.
* A’) R"\ C, isin R" the maximal open set of points, which have a unique minimal jointo A.

* B) The complement of the cut locus C,, i.e. precisely R"\(A O C,) is the maximal open set in R"
\ (A O C,) where the distance function d(A, . )8 is C'-smooth, and its gradient O d(A, . ) islocally

Lipschitz continuous on R\(A 0 C,). At any point O R\(AOC,) the gradient Od(A,q) equals
the unit direction vector of the minimal join from the set A to g.

In order to illuminate the preceding statement A’) we mention here:

Remark: That there exists always a unique minimal join from every point pJ A to C, does not hold in general if

A is only a piecewise C2-smooth submanifold of R". It holds however if A is aregular C1-smooth submanifold of
R". To illuminate the statement in the piecewise C2-smooth case take a planar polygonal domain then it easy to
construct examples where a concave vertex has more than one minima join to the cut locus of the boundary

polygon.

The next result describes local properties of pointsin the cut locus and also local aspects of its topological structure:

Theorem 3: Local Properties of Pointsin the Cut Locus Let A be a closed n—1-dimensional submanifold
of R". In case n > 2 we assume the manifold A to be C%-smooth. If n =2 we only require A to be piecewise
C2-smooth. Under those assumptions the following statements hold

* A) A limit point of non-extenders with respect to A is a non-extender with respect to A. All points
in the cut locus C, are non-extenders respective the set A.

*B) Ign the piecewise linear boundary case, all non-extenders are picas. A limit of picasis here a
pica’.

« C) In the C2-smooth boundary case, if a non-extender is not a pica, then it is a curvature center of
the boundary A it may be both, e.g. the center of acircle.

* D) Theset C, isnowheredensein R".

Proof of Theorem 3: The parts A), B), C) of theorem 3 are are shown in lemma A.1 contained in the appendix of

8d(A.,.) being the Euclidean distance function with respect to the closed set A.The point "." in the expression d(A,.) is a place holder for the
variable of this function. Evaluating the function d(A,.) for a specific variable value ie. for a specific point p yields d(A,p) which is the distance of
the point p to the set A.

9If this limit is on A we have a degenerate case, which we allow.
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this paper. It remainsto prove part D).

Proof of Theorem 3 D) : Assume that the set C, were some where dense in R". Then C, being defined as a closed
set would contain some solid n-dimensional disc K(q,r)={xOR" [|[x—q|<r}, r>0. Obviously A being an
n-1-dimensional submanifold of R" cannot be dense in any n-dimensional disc. Therefore, we can find some
n-dimensional disc K(p,w) ={ xOR"| |x-p|<w}, r>w>0with K(p,w) JK(q,r) such that

K(p,r)nA=0 (24)
There must exist a distance minimal segment g(t) from the set A to the point p. Let g(t) be arc-length
parameterized and assume that g(d(A,p)) = p with d(A, p) being the distance of the point p to the set A. Then the
point g(d(A,p) —w/2) being contained in K(p,w)0C, must be a non-extender by theorem 3 A). This yields a

contradiction with corollary 1 because the path g(t) is distance minimal beyond g( d(A, p) —w/2) up to the point p.
This proves theorem 3 D) and completes the proof of theorem 3.

In order to illuminate the subtleties in the preceding theorem 3, we want to point out:

Remark: If we require the boundary 9B above to be only Cl-smooth manifold (even with Lipschitz-continuous
derivatives), then a limit of picas may be an extender. Thus here alimit of non-extenders may be an extender, cf. also
example 1; moreover, here the picas (with respect to 0B) may be dense in some open subregions of B, thus here the cut
locus and hence the medial axis M(B) will be dense in some open sub-area of B. Note that also if dimension n> 2 and
if the boundary 0B is piecewise linear then statements A) and B) in theorem 3 are violated because alimit of picas may
be a nonextender in this case, cf. also lemma A.2 in the appendix. In the general C*-smooth boundary case, e.g. in the
plane with 0B being a simple closed curve, the media axis M(B) may have infinitely many end points which are caused
by infinitely many curvature centers of dB; hence here M(B) may not be the union of finitely many arc pieces.

3.3 The Cut Locus Avoids Certain Reference Sets

There exists one important result which holds under very weak regularity assumptions. This result says that the cut
locus stays away at least a certain positive distance from a set if that set fulfills certain regularity requirements. This
result implies that the cut locus stays away at least a certain positive distance from a C1-smooth rational spline patch
defined over arectangular domain. This holds if the surface patch is free of self-intersections and if the surface map
has a Jacobian of rank 2 at al points. We shall actually prove a more genera result which includes spline patches as
aspecia case.

Theorem 4: Cut Locus avoids certain reference surface patches. Let q(st): D =[0,1] x[0,1] -~ R® be a
regular Cl - smooth surface S which is free of self-intersections. Regular means that the Jacobian
g =(040,0,9) hasrank 2 everywhere. We assume further that the partial derivatives of q(s;t) are Lipschitz
continuous. Under those assumptions there exists a positive number A such that the cut locus Cq stays
away farther than distance A from the surface S.

Note the requirement that the partial derivatives of q(s;t) are Lipschitz continuous is weaker than C2 smoothness and
it isalready fulfilled if the surface is a C1-smooth rational B-spline patch.

Remark: The requirement of Lipschitz continuity of the first partial derivatives can not be left out in theorem 4, it
follows from [52], p. 65. that this Lipschitz continuity is also a necessary condition to prevent the cut locus from
coming arbitrarily close to the surface S. It is easy to construct non-degenerate C1-smooth planar curves which have
their cut locus coming arbitrarislly close. Namely define a planar curve { (x(t),y(t))/ -1<t<1} by x(t)=t and
y(t) = 0if t < O otherwise y(t) = t¥2 . Thisyields a non-degenerate C-smooth curve which has infinitely large curvature
at (x(0),y(0)) =(0,0) and the cut locus of this curve approaches (and contains) the curve point (0,0).

We give now a proof of theorem 4. For this purpose we shall need the following

Lemma 3: Let D be a compact, convex set in R" and assume that D is n-dimensional i.e. D contains an n-
dimensional disc. Let mbe any positive integer number and assume that the function f(x): D — R™Mis C1- smooth
and regular i.e. |f'(X)h|#0 if h#0. We assume further that the Jacobian f'(x) is Lipschitz continuous in the
variable x. Under these assumptions there exist two positive numbersr,, h, such that for any unit vector N(x)
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[f(x+h) =) —rNC) |>|r| (25)

forall rwithO<|r|<r,if [h|<hjandif f'(X) his orthogonal on the unit vector N(x).

Proof of Lemma 3: In this proof we shall use a first order Taylor development of f(x+h) with a Lipschitz
continuous remainder term. Namely representing f(x+h) by approximation with its Jacobian f'(x) we get

foerh) = f(x) + () () + Rexh)h| (26)

where R(x,h)|h| is a remainder term and f'(x)(h) means that the linear map f'(x) is applied on the vector h c.f. e.g.
Dieudonne [5].

We show next the Lipschitz continuity of the remainder term R(x,h) precisely we shall estimate the norm of R(x,h)
by a product built by the norm of h multiplied with a constant number M, where M is independent of x. For this
observe the Lipschitz continuity of the differentia f'(x) in the variable x means that there exists a number M such
that

[f'(x+h)—f(x) | <M|h]| (27)
if (x+h),x are pointsin D.

If the points x, (x+h) are in D then using (26) and (27) the remainder term fulfills

_Iftx+h) - 60 ~F () () |

)| =
IR(xh) | R
_ [fGerh) = F'(x)(h) = f(x+ 0) - f'(x)(0) |
Ih
1
< sup Y] (28)
O0<s<1 [h]
< sup [f(x+sh) -f (9] (29)
O0<s<1
<M|h| (30)
if we define
W(s) =f(x+sh) - (x)(sh) (31)
then (28) follows from a generalized mean value theorem see Dieudonne [5] as (31) implies
W(9) =f(x+sh)(h) - ((h) (32)
Now (32) implies
W' =If (x+sh)=f ()] |h| (33

and (33) yields (29) and (27) yields (30). In summary the remainder term for the first order Taylor development of
the function f(x) fulfills

IR(x,h)[ <M[h] (34)

where the number M is independent of the point x in D.

We proceed now with the proof of lemma 3. For thisinserting afirst order Taylor development for f(x+h) yields
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[f(x+ h) = f() = NG | = [f(x) + £ ((h) + ROch)Ih| = () = r N(x) |

2 |f'(9) () = rN(x) | = [ROxh) [ |h]

>V hR+r2-Mh2=: A (35)
where

e=:mn{|f'(X) () |/xOD,|h| =1}

BOnote to get (35) we use (34) and we exploit that (by assumption of the lemma 3) f'(x)(h) is orthogonal on N(X).
Applying now the mean-value theorem on the square root function (expression) in (35) we find that there exists a
number & 0 (0,1) such that :

2
PO Ll VT
2Vr2 + &2 h )2
2
L L ~M|hR +r.
2Vr2 + &hP

Now choose two positive numbersr, h, so small that

&

- > M
2\/r02+e2|h0|2

then (25) obviously holds. This completes the proof of the lemma.
Proof of Theorem 4:

We shall prove:

That there exists a number A > 0 such that every minimal join
emanating from Sis distance minimal to Sfor a length A. (36)

The proof of (36) follows from the two subsequent assertions namely assertion 1 and assertion 2.
Assertion 1: There exist two positive numbers 6, R such that the following holds:

Let xbe any pointin D and let g, (t) be any arc-length parametrized segment with g,(0) = ¢(x). Assume there exist two
(arbitrarily small) positive numbers w, n such that the segment g,[0,n] is distance minimal to the subset g(U ) of S
whereU ={yOD/|x-y|<}.

Then for al points
yOUs(x)\{ x} wehave [gy)-g,()|<t ift<R
This means a segment g, (t) which starts as alocally distance minimal join at any point g(x) is distance minimal to the

(whole) subset g(Uy) if the length of g, (1) is <R.

Proving this assertion 1 is the difficult part of the theorem’s proof. We shall give the proof of assertion 1 further
down.

The other assertion used to complete the proof of theorem 4 is the following

10Note e exists because D is compact and e > 0 because here f '(X)(h) # 0 as f'(x) has maximal rank.
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Assertion 2: For any positive number ' there exists a number a(3') such that for any two points x,y in D with
[x-y|=06 wehave|q(x) —q(y)| 2 ad).

Proof of Assertion 2: Assertion 2 holds because the surface S is free of self intersections and because it is defined
over acompact parameter domain D.

Namely define
a@) =min{|qx) - a(y)|/ (xy)OD x D, |x-y| 2 8}. (37)

The set DxD is a compact set in R* and {(xy) OR*/ |[x-y| =3} is a closed set in R%. Therefore the set
W= (D x D)nB is acompact subset in R*. The function (x,y) - a(x,y): = |q(x) — g(y) | is a continuous function on
R*. This function a(x,y) is positive on W because x # y and because the map q(s;t) is free of self-intersections.
The function a(x,y) being a continuous function defined on a compact set W must attain its minimum which must be
positive here. This shows that a(8) > 0 and proves assertion 2.

Combining assertion 1 and assertion 2 we finish now the proof of theorem 4. Thiswill prove the theorem 4 by using
the still unproven assertion 1 which we will show further down.

Completing the proof of theorem 4 by using assertion 1 and assertion 2: Let §,R> 0 be the numbers described
in assertion 1 and let a( & ) be the number described in assertion 2. Then the claim of theorem 4 will hold if we
define

A =min{ %a(é), R}.

This means any minimal join g, () starting at any point g(x) in S remains distance minimal 1t the surface S over the
length A. This holds because by assertion 2 no point g(y) in D with |x — y| < d can have have a distance less than A
to the point g, (A). Therefore at most a point g(y) with |y —x|> & may have a distance smaller than A to the point
g,(A). However this is impossible because by assertion 2 for points with |[x —y| = dis[q(x) — q(y) | = a(d). Thusif
[x-y|=dand 0<t< Athen:

2A<a@) <[qy) —aX) | < lay) — 9O + 1akx) — gD |
A< |a(y) —g,(t) | +t

A=<lqy) - g, (D).

Thus for points y outside Ug(x) a point q(y) is not closer than distance t to the point g,(t) if 0<t<A. This
proves theorem 4 using the unproven assertion 1.

We finish now the proof of theorem 4 by giving a proof for assertion 1

Proof of Assertion 1. The Lemma 3 implies assertion 1 in most but not all cases where a minimal segment g, (t)
starts on a surface patch S. (Note we assume that g, (t) is arc-length parametrized.)

It covers all the cases where the segments initial point g(x)=g,(0)
is not on the boundary of the patch, because in such a case the
initial direction of the segment g, (t) must be normal to the patch S. (38)

The lemma covers even more cases. Namely if the minimal join g,(t) starts in the interior of one boundary edge b
then it must be orthogonal to that boundary edge b. Here now the lemma 3 implies that g, (t) remains to be (locally)
aminimal join to the boundary edge b. In other words in this situation lemma 3 shows that:

1170 specify our notation we say here that we assume that g,(t) isarc-length parametrized.
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al points in q(Ux(x)nb) are further from g, (t) than the point q(x) if
t < Rand if we assume that R stands for the number r_ in lemma 3. (39

Note assertion 1 is equivalent with the statement:
foral x inD thedistance  d(q(Ux(x)), CUa(X)) =R (40)
Asthe picas are dense in the cut locus by Theorem 2, (40) is equivalent to the statement

for al x in D the set q(U(x)) has no picas
coming closer to it than distance R. (41)

The preceding conclusions so far drawn from lemma 3 show that Cq(UB(x)) contains no pica p in distance closer than
R to q(Ug(x)) such that one of the foot points of p12 is either an
interior point of the patch (42)
or avertex point of the patch (43)

Clearly the case (42) is excluded by the above statement (38) and (43) is excluded by the combination of (38) and
(39). Namely if one foot point is a vertex point v then (under our nearness assumptions) the other foot point of the
pica must either be an interior patch point or must be on a boundary edge containing the vertex v. Therefore the
only remaining case which needs to be treated i.e. shown to beimpossible isthe one:

where a pica point p has two oblique minimal joinsto S which have two foot
points q(x) and g(y) in two adjacent boundary curves and where |[Xx —y| < & (44)

Indeed case (44) is actualy the situation which allows the cut locus to come arbitrarily close to a boundary vertex in
case the vertex is concave. Before we start a detailed discussion of the oblique pica case (44) we show now first that

any corner part of the patch S can belocally
approximated by a convex planar subset. (45)

Proof of (45): Let
be the differential related to the vertex point (0,0) of the patch S. Let

Co(g) ={(st)d[0,4] x[0,4] / [(st)!| < &}

Co(g) is obviously a convex set and the linear map L (preserving convexity ) will map Co(g) onto a convex set
L(Co(g)) OL(R?).

The set L(Co(g)) must be contained in a proper sector in the Euclidean plane with an opening angle w< 1t This
term proper holds because L(Co(g)) cannot contain a straight line segment g passing unbroken through L((0,0)Y)
because otherwise we could find two vectors x;, X,[J1Co(g) such that L(x;), L(x,) would be collinear to g. This
would yield a contradiction with the facts that x;, X, are linear independent and that the linear map L having
maximal rank preserves linear independence.

Exploiting the approximation properties of the differential L we find that D, = q(Co(e) ) is contained in aa set Ap(€)
which can be described as follows!3

D, O{L(st)+ R(st) /L(st)OL(Co(e)), |R(st) | < % IL(st) B

12A foot point of p on g(U4(x)) is defined as a point nearest of g(U,(x)) to p.

Moreover this set Ap(e) yields also a quadratic approximation of D,
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4where
B=min{ |L(st) [/ |(sD)| =1}
and M is defined by (27), (34).

Obviously for sufficiently small € > 0 the set D, can be shown to be contained in a convex set say

D, O{L(st)+ R(st) /L(st)OL(Coe)), | R(st) | < a(e) M|L(st) %

where a(g) can be made arbitrarily small if € is shrinking to zero. This completes the proof of (45).

We continue now the discussion of (44) that is we continue to show why (44) is not possible if the number & in (44)
is chosen sufficiently small.  For this pick any point p,=q(s,0) on a boundary curve b, where

b,={d(s0)/0<s<1}. The surface normal N(q(s,,0) and the two tangent vectors d.((s,, 0),9,d(s,,0) span the
3-space R3p at q(s,,0). The plane spanned by N(q(s,,0), 0.a(s,, 0) separates the 3-space R3p into two half spaces.
The vector 0,9(s,, 0) points into the half space H+Po corresponding to the interior of the patch at p,. The vector
- 8,9(s,, 0) points into the half space H'ID0 corresponding to the exterior of the patch at p,. Let V+p0 be any unit
Vector vector in H+p and let
g(s) ={p0+a/+p /0<s<1}

be a segment starting at p, and pointing into the direction V+p . Then:

for sufficiently small numbers s the orthogonal projection of g(s) onto S

will be contained on the patch Sin aneighborhood of the point p,,. (46)
Here (46) holds because the projection pT(v”pO) of V+Po into the tangent plane spanned by 0.q(s,, 0),0,a(s,,0) is
transversal to the boundary curve at p, and points into the patch interior if v*_isnot collinear to the surface normal

Po

a p, (In casev"po is collinear to the surface norma at p, then (46) holds anyhow.) Using (46) it is not difficult to

see that for arbitrarily small values of s there are points x(s) on S such that |x(s) —g(s)| is smaller than s.

15 Therefore g(s) cannot be (alocally) minimal join to Sif the initial direction vpo is chosen from H+p0 and if vpo is
not collinear to the surface normal at p,. Thus in order to have an oblique minimal segment g(s) a the boundary
point p, we must choose an initial direction v‘po O H‘po. We can now assume that v'po is not collinear to the surface
normal at p,, because that case had already been settled in the preceding discussions essentially as a consequence of
lemma 3. Let now g(s) ={ p, + SV / 0<s<1}.

Now if g(s) islocally distance minimal to S then :
g (0) must be orthogonal to the boundary edge b, as
P, # 9(0,0), hence Vi is orthogonal to dq(s,, 0). 47
Let g(s) be an arc-length parametrized distance minimal segment emanating from the boundary edge b, adjacent to
by i.e
by: ={q(0t)/0<t<1}
The segment g () is oblique to the boundary edge in a way analogue to g(s), i.e. g(0) points also into the

_ M
For fixed given values (s;t) the vector R(st) attains all pointsin adisc of radius El L(st 2.

15This is obvious in case S agrees with its tangent plane at P, In the general case it follows because this tangent plane yields a first order
approximation of the patch Sin a neighborhood of the point p, and because the difference between s and the distance of g(s) to the tangent plane
at p, isgiven by apositive linear function @(s) in the variable s say @(s) = ms.



18

corresponding (exterior) half space H‘go). We want to show that:

there exists a positive number R such that s) # g(s) for all s<R
if theinitial points g(0), g0) are sufficiently close. (48)

Now let g(s), gr(s) be projections of g(s), Ys) into the tangent plane T spanned by 0.9(0,0), 9,9(0,0) at q(0,0). If
g(s), is) are supposed to intersect then also their projections. We are essentially interested in the case where g(0),
g0) are located arbitrarily close to the vertex ¢(0,0). We have established above below (45) that 0.g(0,0), 9,q(0,0)
build a convex vertex angle 3 smaller than 1t For positive sufficiently small numbers st say 0 <st< 6'0 the angle
between 0.9(s,0), 9,9(0,t) comes arbitrarily close to 3 and is therefore also smaller than taswell. Using elementary

planar geometry it can be shown that the segments g[0,0), §0,0) will not intersect if the initial points g(0)=q(s,0),
y0)=q(0,t) are chosen such that st < 6'0. Therefore in order to have minimal joins which start oblique from the
boundary edges b,\{ q(0,0)}, b;\{q(0,0)} intersect one has to choose the initial points g(0)=q(s,0), §0)=q(0,t) such
that s,t>& . This proves that (44) is not possible if 3 is here smaller than & ,. The same considerations can be

applied for the corresponding situations at the remaining three vertices. It is now obvious that for an appropriately
small chosen o the case (44) isimpossible. This finishes the proof of assertion 1.

Aswe have now established assertion 1 we have also completed the proof of the theorem 4.

Analyzing the preceding proof of theorem 4 one finds that theorem 4 holds aso in the more general case if the
domain D is chosen to be any set in R2 which has the property that there exists a C1-diffeomorphism @ from D to a
compact convex set in R? with the derivative of @ being Lipschitz continuous. The preceding theorem is useful in
studying surface intersections, see Kriezis, Patrikalakis, Wolter [20] and Kriezis[19]. Another result being
essentially a conseguence of the preceding theorem 4 is the subsequent corollary.

Corollary 4.1: Using notations and assumptions of Theorem 4 then for any positive number € < A :

A) The offset O(S ={xOR®|d(x,9 =€} is a Ctl-smooth manifold, diffeomorphic to the embedded two-
dimensional unit sphere and the offset region OR (S ={xOR"|d(x,9 <€} is a solid homeomorphic to the 3-
dimensional unit disc{xOR® |x|<1}.

B) The surface Sisthe medial axis of the solid OR(S).

Proof of Corollary 4.1 : Our proof of part A) will be sketchy and we will omit some detailed steps which are not
difficult to carry out. Let Q={(u,v,w)OR3| w=0, (u,v)d[0,1] x[0,1] } be the unit square embedded in R3.
Let OR(Q) ={yD R3| dy,Q)<¢}, O(Q ={yO R3| d(y,Q) = €} beoffset region and offset surface respectively
for the progenitor set Q and offset distance €. It is not difficult to show that OR (Q), O,(Q) are homeomorphic to
the closed three-dimensional unit disc and the two-dimensional unit sphere respectively with O,(Q) being the
boundary surface of the bordered manifold OR(Q). We prove part A) by defining a homeomorphism
P:OR(Q) - OR(S). This homeomorphism s which also induces a homeomorphism between O,(Q) and O(S) is
constructed such that

J maps distance minimal segments between Q and O,(Q)
on distance minimal segments between Sand O,(Q). (49)

We give now a detailed description of the map . For this we denote the parametric surface map representing S by
f(u,v) :[0,1] x [0,1] - R3. The surface normal of Sat a point f(q) 0 Sis denoted by N(q) and depends continuously
on the variable point Q. Let g ={(uv,w)UJQ|v=0}, &={(uvw)OQ|u=1}, eg={(uvw)dQ|v=1},

g, ={(uvw)0Q|u=0} be the four edges of 0Q. These edges can aso be viewed as paths depending on the
variables u or v respectively, in this context they are denoted by e;(u), &,(v), e5(u), €,(v). For any of those four
edges g, 1<i <4 we define the exterior boundary normal n; in the tangent plane of Ssay at a point e, (u) by a unit
tangent vector n, (u) of Sat the point e;(u) ; the exterior boundary normal vector n,(u) must be chosen orthogonal on
the tangent vector 9, ,f(u,0) and the sign of n,(u) is determined by the condition that the angle between - 0,f(u,0)

and n;(u) must be smaller than 2. Note that the line paralel to the tangent vector Df(e'i(u)) (or Df(e'i(v))
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respectively ) separates the related tangent plane into two half planes and n; is chosen to point into the exterior half
space which does not contain the "interior” tangent vector 9, f(u,0), - 9,f(Lv), - df(u,1), d,f(0,v) respectively for
the cases i = 1,2, 3,4. These considerations together with the condition that n; must be orthogonal on the tangent

vector Df(e'i(u)) (or Df(e'i(v)) respectively ) give the complete definition of the exterior boundary normal n,. To
simplify the description of the map W we need also to introduce the subsequent definitions

If uvd[0,1] then Au=Av=0
If uvd(0,1) then

Au= —-uif u<0, Au=u-1ifu=1
(50)
Av= —-vif v<0, Av=v-1ifv=>1

With these notations we define now the map Y(g) with g=(uyvw) . If (uv)O[0,1] x[0,1] then
W(a) = wN(u,v) +f(uv).

If v<0andu>0andif v (Au)2 + (Av)2>0 then
W(g) = f(u—Au,v+ Av) + WN(U - Au, v + Av) +

Au ng + Avn2

V(Au)2 + (Av)? (51)

|Aun, + Avn,|
On the other three rectangular strips around the boundary of the unit square Q the map Y(q) is defined analog to the
definition given in (51). The map Y is obviously continuous and elementary considerations show that the map { has
property (49). It is not difficult to verify that the preimage under the map  of any shortest segment between S and
O(S) is ashortest segment between Q and O,(Q). All these considerations together show that Y: OR(Q) — OR(S
is a continuous, injective map onto OR(S), where the injectivity follows because € < d(S CJ) i.e. the distance of Sto
its cut locus is larger €. This shows that  defined on compact set and being a continuous, injective map onto its
image set is a homeomorphism®. This fact in conjunction with theorem 2 essentially imply part A of the corollary.
Note the claim that O,(S) is a C11-smooth two-dimensional submanifold of R® follows with the implicit function
theorem (c.f. [5]) from the fact that the distance function d(S,.) is Cl1-smooth with a non-zero gradient on O(9
which holds by theorem 2B because d(S Cg) > €. Finaly the claim that O(S) is diffeomorphic to the the unit sphere

< follows because Og(S has the homeomorphy type of the unit spherel’ and because smooth, compact two-
dimensional homeomorphic manifolds are diffeomorphic cf. Hirsch [11].

Proof of corollary 4.1 B) : It has been established in the proof of part A) that the homeomorphism @ maps digoint
shortest segments between O,(Q) and Q on disjoint shortest segments between O,(S) and Sand that the inverse map
of Y maps disjoint shortest segments between O,(S) and S onto disjoint shortest segments between O,(Q) and Q.
The homeomorphism Y provides a one to one correspondence between the intersection points of minimal joins in
both sets OR (Q) and OR(S); those intersection points are given in OR(Q) by the intersection of minimal joins
between O,(Q) and Q and in OR(S by the intersection of minima joins between O,(S) and S Clearly those
intersection points of minima joins are picas with respect to either one of two reference sets O,(Q), O(S).
Therefore and because Q is the set of picasin OR(Q) respective O,(Q) it is obvious that the image set Y(Q) =S is
the set of picasin OR (S) respective Oy(S). This proves part B) in view of theorem 1 and employing the fact that the
picas are dense in the cut locus by theorem 2 A). This finishes the proof of corollary 4.1

In practical terms this corollary 4.1 states that any regular C1-smooth regular spline surface patch which is free of
self-intersections can be manufactured (modelled) with a ball cutter of radius € where the center of the ball cutter

16Note that it is a well known fact from point set topology that a continuous, injective map defined on a compact domain yields a
homeomorphism onto the image set of the compact domain cf. e.g. [17], [15].

Note that O,(S) is homeomorphic to < because O,(S) isviay homeomorphic to O,(Q) and because it is easy to construct a homeomorphism
between & and O,(Q) asthis construction may employ convexity properties of the solid OR (Q) .
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moves along a compact C11-smooth offset surface O,(S being diffeomorphic to the unit 2-sphere. This offset
surface O,(S) bounds a solid OR(S) whose medial axis equals the surface S. In other words, if the offset distance is
smaller than the distance of the progenitor surface Sto its cut locus then the progenitor surface is the medial axis of
the offset region, see also figure 1 illustrating a surface S and a related offset surface OR(S). Another engineering
application for the discussed offset surfaces and offset regions arises within the context of tolerancing where one
wants to determine if a manufactured object fits within a specified tolerance region (offset region) of an ideal design
surface, see Rossignac [43], Rossignac and Requicha [44] and Patrikalakis and Bardis [36].

=N X
PV D, \
AN\
LN X
—

Figure 1. The Progenitor Surface S as Media Axis of the Offset
Region OR(S)

Analyzing the preceding proof of theorem 4 one can derive another conclusion interesting enough to be called a
theorem. Namely we have

Theorem 5. Cut Locus avoids compact unbordered submanifolds of R". Let A be any compact
unbordered C!-smooth submanifold of R". We assume that al local parametrizations of A have locally
Lipschitz-continuous first derivatives. Then there exists a positive number (3 such that the cut locus C,
stays away further than distance 3 from A.

Proof of Theorem 5 : This proof exploits essentially that lemma 3 is formulated for any function f(x) defined on
any convex solid in R™ and that the range of the function f(x) is the space R™™, m any integer larger than zero. This
lemma 3 proves case ( 38 ) of assertion 1 the only case needed if the reference set A is an unbordered Cl-smooth
manifold. Exploiting also that A being a submanifold is free of self-intersections it easy to generalize assertion 2 to
local parameterizations of a compact submanifold A of R™™.  Applying these considerations together with the
arguments used while completing the preceding proof of theorem 4 using assertion 1 and assertion 2 on a finite
number of local parameterizations which cover A then employing compactness arguments it is not difficult to show
that C, cannot come arbitrarily closeto A. This completes the proof of theorem 5.
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3.4 TheRelation of the Cut Locusto Equidistantial Setsand Voronoi Diagrams

We want to explain how the concept of cut locus is related to two other related concepts in computational geometry
and geometric modelling. Those related concepts are the concept of a Voronoi diagram of a discrete point set and
the concept of an equidistantial set (surface) or mid set of two disconnected sets. We hope that our subsequent
results will help to clarify possible confusionsin this area. It will turn out that the cut locus concept introduced by us
offers a common framework unifying apparently different concepts such as Voronoi diagrams, equidistantial sets
and medial axes.

Let A, B be closed and disjoint subsets of R". The disjointness condition means that

AnB= L. (52)
The equidistantial set with respect to the pair of sets A, B is denoted by V(A,B) is defined by
V(A,B) = {xORYd(AX) = d(B,x)} (53)

Under these assumptions we have

Theorem 6: Equidistantial Sets as Subsets of the Cut Locus. The equidistantial set of two digjoint closed
sets A, B is a subset of the cut locus C,5 of the union ACIB i.e. with the notation introduced above we
have

V(AB)OCpg

Proof : Let x be a point in V(A,B). Then by [52], p. 38 there exists a point x, being nearest on A to x and there
exists a point xg being nearest on B to x. Because of (53) the two minimal joins seg[x,.X], seg[xg.X] are both
distance minimal from x to ALIB. Therefore and because x, # X5 as (52) the point x must be a pica respective ALIB.
Thusxisin C, ; g Which proves the theorem.

We want to point out that the relations between equidistantial sets and cut loci become much more complicated in
case one removes the disjointness condition (52). To illuminate this we describe the following example. Consider
two haf circles S;, S, the union of which builds the planar unit circle and we assume that

SnS,={x;=(0,1),% =(0,-1)}. Inthis situation V(S,,S,) contains the whole y-axes while CSlD S, contains only
the point (0,0).

Another quite instructive example is the following one being a modification of the former example : Here S, is
defined to be the circular arc {(xy)/(x+0.75)?+y?>=1,x<0} and S, the circular arc defined by
{(xY)/(x=0.75)2 +y?>=1,x20}. In this example S;, S, intersect transversally while in the former example the
intersection was tangential. Here now V(S;,S,) equals the y-axis while the medial axis of S; [0 S, equals the
segment {(x,y)/y =0, |x| £0.75}. The cut locus CSl 0s, contains the latter medial axes together with the set

{(xy)/ x=0, |y| 2 V7/16}.

In order to state our next theorem we need to review some definitions related to the concept of Voronoi diagrams.
We follow here essentially Preparata and Shamos [40].

Let P={pOR"i0Ol} asetof discrete pointsin R", with the set | being used as a set of indices to distinguish the
points in P. This set may even be infinite we assume however that the points in P do not have a cluster point. In
order to explain the concept of a Voronoi diagram we define first for every p, in P the locus of proximity V(i)
containing those points which are closer to (or at least not farer from) p; than to any other point of P\{p;}. Clearly
the set V(i) can be characterized as

V(i) = {xORY d(x,p) < d(x,P\{p;})} (54)
Obviously the set V(i) can aso be characterized by the equation
V(i) = {xORYd(x,p;) < d(x,pj) for all B OPY{p}} (55)
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The set

H@i,j) ={ xOR" d(x,p,) < d(x,pj) } (56)

defines a closed half spacein R". The boundary of this half space is given by the plane containing all points which
are equidistantial to the two points p;,, p;.. Or with the notation introduced above the boundary of H(i,j) can be
described also as the medial set V({ piﬁ, { pj}) with respect to the two point sets {p,;},{p,} each of which
containing asingle point. With (56) and (55) we can obviously redefine V(i) as an intersection of half spacesi.e.

V(i)= n H(i)) (57)
e
This redefinition of V(i) also shows that
V(i) being an intersection of convex setsis convex. (58)

Using concepts and notations introduced abovein (54), (55) we give now the following definitions:

Definition : The boundary dV(i) of the locus of proximity V(i) is the Voronoi polygon (polytope) respective the
point p; of the given set P.

It is obviousthat apoint in 0V(i) is contained in aboundary plane of some H(i,j).

Definition : We call the union of all the polytopes dV(i), p, P isthe Voronoi diagram V(P) respective the point set
PinRNi.e

VP): = O V(i) (59)
p; 0P

We shall use the subsequent characterization of 0V(i) i.e we need that

oV(i) = {xORY d(x,p;) = d(x,P\{p;})} (60)
Proof of (60) : Let x[d V(i). Then in view of (57) there must exist a point B OP\{p;} such that xiscontained in
the boundary plane of H(i,j). This boundary plane is equidistantial between between p; and P hence d(x,p;) = d(x,pj)
for somej #i. Thus

d(x,py) =d(x,p) 2 d(x,P\{p;}) (61)
The point x being contained in dV(i) is also in V(i). Therefore (54) together with (61) imply d(x,p,) = d(x,P\{p;}).
Thus the point x must be contained in the set given by the right hand side of equation (60). This provestheinclusion
"[O" claimed by (60). It remains to show the converse inclusion " 0" which is also claimed by (60). For this let x be
a point contained in the set described by the right hand side of (60). Then by (54) the point x is contained in V(i).
Let P be a point nearest in P\{p;} to x. Then x is in the boundary plane of H(i,j). Thus the half space H(i,j) cannot
include any open n-dimensional disc D containing x. Therefore V(i) being ( by (57) ) a subset of H(i,j) cannot
include such a disc D either. This proves that x cannot be an interior point of V(i) and thus x must be a boundary
point of V(i) . Thisshowstheinclusion" 0" and completes the proof of (60).

We give now our description of the Voronoi diagram by the cut locusi.e. we have the following result.

Theorem 7: The Voronoi Diagram as Cut Locus of a Discrete Point set. For any discrete set of points
P={p,OR"|i0I}*®istherelated Voronoi diagram characterized by the relation

V(P)=Cp (62)

Proof of theorem 7 : We show now (62). This means according to our definition of a VVoronois diagram stated in
(59) we have to prove

18The set | serves here as a set of indices used to distinguish the pointsin P.



23

0 9 V(i)=Cp (63)
pUP

For this we show first that a point x in V(P) must also be contained in Cp. Let x[JV(P). Then there exists a point
p, P suchthat x[d V(i). Clearly for any p; JP isd(x,P) = min{ d(x,p;), d(x,P\{p;})}. Thususing (60) we find that

d(x,P) =d(x,p) = d(x,P\{p}) (64)

Therefore and because {p;} n (P\{p;}) = O there exist two distinct distance minimal joins from x to P. One of those
joinsends in {p,} the other ends in P\{p,}. Thus x is a pica respective P. Therefore x is in Cp. This proves the
desired inclusion.

We show now the other inclusion claimed by (63). For thislet x be apoint in Cp. As by theorem 3 A) the picas are
dense in C;, it is easily seen that x must be a pica respective P. Thus there exist at least two distinct minimal joins
from x to P. Those two minimal joins end up in two distinct points p;, B in P. Thus we have

d(x,P) = d(x,p;) = d(x.p;) (65)
Now using that P OP\p} weget
d(x,P) <d(x,P\{p;}) < d(x,pj) (66)

The combination of (65) and (66) yields
dix,p;) = d(x,P\{p;}) (67)

Therefore (60) implies that the point x is in 0V(i). This proves that x is in V(P) and finishes the proof (63). This
completes the proof of theorem 7.

4 Global Resultson the Medial Axis

4.1 The Medial Axis hasthe Homotopy Type of its Reference Solid
The fundamental global topological shape relation between a solid B and its medial axis M(B) is stated in the
following:

Theorem 8: Global Topological Shape Theorem for the Medial Axis: Let B be a compact bordered
n-dimensional submanifold of R".1¥ Let us assume that 0B is C>-smooth submanifold if BOR™; in case
BOR? the weaker boundary regularity namely dB being piecewise C2-smooth (possibly disconnected)
submanifold is sufficient. Under these assumptions the medial axis M(B) is a deformation retract of B.

Proof of the Shape Theorem:
The proof of the global shape theorem consists in constructing a retract? :

R:B\oB - M(B)\dB (68)
and a homotopy

f(x,t): (B\dB) x | ~ B\dB (69)

with 1 =[0,1],

19This means in practical termsthat B isacompact solid in R".

Dgeee.g. Massey [28] for the definition and discussion of a deformation retract.
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such that
f(x,0) =X, f(x,1)=R(x) foralx O B\oB (70)
and
fiy,t) =y foral (y) O (M(B) x I). (71)
The retract map R must be continuous and must satisfy
R(x) =x foral x O M(B)\oB. (72)

In order to construct the deformation retract we define the homotopy f(x,t) by

f(x,t) ;= x + t d(x,0(x)) O d(dB,x)
with 0Jd(dB, x) being the gradient of the
distance function x - d(0B, x) at the point x

for x O M(B) we define f(x,t) = x; (73)
Herein (73)

WY(x) is defined to be the point where the extension

of the minimal join from 0B to x meets M(B) = Cyz nB. (74)

Figure2: Deformation Retract

See also figure 2 illustrating the deformation defined by (73), (74). The proof for the continuity of the map W(x)
makes use of part A) of theorem 3. We shall show the continuity of the map W(x) later. To prove the continuity of
f(x,t) we need to exploit also part B) of theorem 2 which in view of theorem 1 guarantees the continuity of the
gradient function

X - 0d(@B,x) on B\ (0B O M(B)).

Note the range of the homotopy f(x,t) isindeed in B\ 0B for any (x,t) 0 (B\oB) x |
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i.e. f(x,t) O B\dB (75)

because obviously  d(f(x,t), dB) = d(x,0B) >0 for al t O | and because (by Proposition 1) 0B separates B\0B
from RMB. These two conditions imply (75). Namely assume there exists a point x(OB\@B with
f(x,t,) J(R"\B@ B). Then there would exist anumber t“with 0 <t’ <t, such that f(x,t' )@ B, d(f(x't ),0B) =0a
contradiction. The reason why we defined f(x,t) on B \ 0B is that (d(0B,.) can generally not be extended
continuously to the boundary 0B if dB is not smooth.

We need to make the preceding proof formally complete. For this we we must show that:

the map f(x,t) iswell defined and continuous. (76)
We also need to verify that

R(x)=x for x O M(B). (77)
In view of the definition of R(X) in order to show (77) one needsto prove

f(x,1)=x forx O M(B) (78)

To prove (76) and (78) we shall use that
the map Y(x) is:

well defined, (79)
continuous, (80)
and

Y(x)=x forx O M(B). (81)

We shall prove (79), (80), (81) later. Let usfor the time being assume that those three claims are correct and and let
us use them to establish (76) and (78). To do this we use also theorem 2B) and theorem 1. Namely by theorem 2B)
the gradient of the function describing the distance to dB i.e. [Jd(9B, x) is continuous on B\ (0BUC,z ) and by
theorem 1 we have M(B) = Cy5n B. Therefore

Od(0B, x) iscontinuouson B\ (0BO M(B)) (82

Using (82) together with (80) and (79) it is obvious that the map f(x,t) is continuous and also well defined if x is
outside of M(B) . Thus to complete the proof of (76) it remainsto show that

f(x,t) is also well defined and continuous if x isin M(B). (83)
Clearly by (81) we have f(x,t)=x for x in M(B). This shows (78). Let now be x, be any point in M(B) , t, any point in
[0,1] and let (x,t,) be any sequencein (B\0B) x [0, 1] converging to (x,, t,). For proving the continuity of f(x,t) for
any point x in M(B) we have to show that f(x,t,) converges to f(x,t,). Using (81) and (80) we find that the
sequence t,d(x,, (X)) is converging to 0. This together with the fact that the norm of the vectors [ld(0B, x) is
bounded by 1 proves that the sequence t,, d(x,, Y(x,,))0d(0B, x,) must converge to 0, hence f(x,, t,,) must converge

to X, This proves that f(x,t) is aso continuous a any point x, in M(B) thus it completes the proof (83) and finishes
the proof of (76).

It remains to show ( 79), (81) and (80). Clearly the claim of (81) can be viewed to be a consequence of the
definition of Y(X). This proves (81). We have to show (79). For this we have to prove that for every point xin B\oB
the definition given for the function W describes a unique point Y(x). Let x be any point in B\dB. The case where x
isin M(B) has already been settled before. Let us therefore assume that x is not in M(B). By theorem 2A ~ we know
that there exists a unique minimal join g, from 9B to x. This segment g, has length larger than 0 because x is not on
0B. Extending g, beyond x the extension must eventually meet 9B by Proposition 1 because x is in B\dB. This
means that the latter extension segment fails eventually to be distance minimal to dB. Thus the extension must meet
CsgnB=M(B) before leaving B\dB, say it meets Cyz not closer than in distance >0 to dB. The extension
segment say extended up to distance &/2 to the boundary is compact and contained in B\0B. Denote this extension
segment by seg. The intersection of the compact set seg with the closed set M(B) is compact, recall M(B) was
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defined to be closed as it includes all limit points. is compact because M(B) is closed. Therefore there exists a
unique point nearest to x on the intersection of M(B) with the extension segment seg. This proves (79).

It remains to show (80). We do this now. For this we show that:
If x,, isany sequencein B\dB is converging to any point x, in B\dB

then Y(x,,) converges to Y(x,). (84)
To prove (84) let us discussfirst the case that x; is outside M(B) i.e.
o =d(x,,M(B)) >0 (85)

The minimal join gX from 0B to x, can by (79) be extended until it meets M(B) in a point y(x,) # x,. The segment
gX startsin a boundary point b, and gX contains X, as an interior point. Let gX be the minimal join from 9B to x,.
Then the segment sequence gX must converge to the segment gX because otherwise the point x, would be a pica

contradicting the assumption that X, is not in M(B).21 Therefore the sequence of of segments defined to be the
extensions of gxn until Y(x,) OM(B) has al its limit points in an extension of gxo. As M(B) is closed any limit w of
the sequence @(x,) must be contained in M(B). Such a limit point w of (x,;) cannot be an interior point of the

segment joining X, with @(x,) as this segment (being the extension part of the minimal join from the boundary 9B to
X, ) does not meet M(B) before it reaches Y(x,). We want to show that

w o= Y(x,) (86)
It remains to exclude the possibility that w is located on the extension of seglb,, W(x,)] after the point Y(x,).
Assume the latter happens. The sequence of minimal boundary joins yields a subsequence converging to a minimal
segment g; from w to dB. This minimal segment would now include W(x,) as an interior point contradicting the
assumption that (x,) CM(B) is a nonextender because all points in M(B) are nonextenders by theorem 3 A) under
the continuity assumptions stated above for 0B in theorem 8.22 This proves (86) for the case that X, is outside of
M(B). Let us therefore discuss now the case that x, is in M(B). Again we have to prove (86). Let now x, be a
sequence converging to X,,x, a point in M(B). Let d, =seg[b,, W(x,)] be the segments defined by extending the
minimal join from the boundary 9B to x, up to the point Y(x,); we assume here that b, is the point where the
segment d,, starts at the boundary. Let w be any cluster point of the sequence (x,). We must prove (86). Assume
that d, denotes aso the subsequence of segments whose end points Y(x,,) converge against w. The sequence d,,
contains a subsequence which converges to aminimal join d, from 0B to w, c.f. [4], p. 20 or [52]. Asall d,, contain
the corresponding x,, the limit segment d must contain the limit point x, of the sequence x,,. Note by definition of
the map Y we have Y(x,) =X, by (81) because x, is now in the set M(B) which contains only nonextenders.
Therefore the segment d, being a minimal join from the boundary to the point w=limy(x,) contains the
nonextender point X, = Y(x,). Clearly thisis only possible if w= )(x,). This shows (86) in case X, is in M(B)\0B
and completes the proof (84), hence the proof of (80) is finished. Therefore the proof of Theorem 8 is now complete.

We now draw some conclusions from the fundamental shape theorem by applying standard results of homotopy
theory cf. eg. [47]:

Corollary 8.1: Under the assumptions of Theorem 8 the medial axis M(B) is path-connected because B is path
connected and it has the same homotopy type as B; hence all homotopy groups of B and M(B) agree, hence M(B) is
simply connected if B is simply connected.

211t is well known that any sequence of minimal joins contained in a compact set contains a subsequence converging against a minimal join,
c.f. [4], thisresult is applied here and will be applied often in proofs without explicit reference.

2Note to establish the continuity of Y(X) we use at this point that all pointsin M(B) are nonextenders. Aswe also use the property that M(B) is
closed we need in this proof sufficient conditions under which theorem 2 A) holdsi.e. we need that alimit of nonextenders must be a nonextender
itself.
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Note that although the medial axis is connected under the assumptions stated in theorem 8 the cut locus is generally
not connected as we explain in the subsequent

Remark : Evenif 9B isaC*-smooth simple closed planar curve bounding atopological disc B then the cut locus Cyg
is generally not connected unless B is convex. Moreover the cut locus C;z may even have arbitrarily many connected

components in RAB, each of which may start in a curvature center of the curve Cyg- Those components being
unbounded will proceed to infinity.

4.2 The Reconstruction of a Solid by its Medial Axis

The preceding theorem explained the relations between the topological (global shape) structure of a bordered
manifold B and its medial axis M(B). Next, we are going to discuss how it is possible to reconstruct B via M(B) .
Before that, note that the maximal disc radius function:

rM(B) - R

which was defined by r(x) : = d(0B, x) is obviously a continuous function, because d(A,.) is continuous for any
closed set Ain R"; d(A, .) iseven Lipschitz continuous and its restriction to M(B) is Lipschitz continuous as well.

The result of this section isthe

Theorem 9: (Reconstruction Theorem:)
Assume we know the medial axis transform M(B), r: M(B) - R of adomain B, then we can reconstruct
B. Namely, we have:

B= O K(x,r(x))
xOM(B)

where the union istaken for all discs with center x 0 M(B) with
Kxr(x)) ={y O R/ [x-y| <r(x)}.

Proof of the Reconstruction Theorem:

We want to prove that

B= O K(XxrX) (87)
xOM(B)

For this we show the following assertions

BO O K(x,r(x)) (88)
xOM(B)

BO O K(x,r(x)) (89)
xOM(B)

Clearly (87) is a consequence of (88) and (89).
Assertion (88) istrue as

B O K(x,r(x)) for al pointsx O M(B) (90)
We show (90). Namely by definition r(x) = d(x, 0B). Now in case K(x,r(x)) would contain any point y 0 R"\B then
by proposition 1 the segment connecting x and y would contain a boundary point z with a distance smaller than r(x)
to x acontradiction. This proves (90).
In order to prove (89) we show that:

For every pointy [ B there exists apoint X,

such that y D K(x,,r (%) (91)
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If here y 0 M(B) then the claim (91) is obvioudly true becausey 00 K(y,r(y)) evenif r(y) iszero. Therefore assume
y O M(B) thus

d(y:M(B)) >0 (92)
because M(B) is a closed subset of R". Now as B is a manifold with boundary 9B it is possible to approximate y

with a sequence of points y, [ (B\dB). For every point y,, in this sequence there exists a minima join s, to the

boundary 0B , see[52]. It is possible to extend any of these minimal joins s, to get a minimal join s, from the
boundary 9B to a point ¢, in M(B). Recal by theorem 1is M(B) =BnC,g . Therefore employing the definition of
Csg @ny minimal join from the boundary 9B to a point b [ (B\dB) can be extended as a minimal join a until it hits

M(B) in apoint g. Thusa yields then also a minimal join from g to dB. We can choose a subsequence §nk of s,

which converges against a minimal join § see[52], Busemann.23 The segment 5 is a minimal join from 9B to a
point in M(B). Note the sequence of segments §nk contains a sequence of points ynk (being a subsequence of y,)

which converges against y. Therefore the limit segment S containsy. Asall §”k meet M(B) also the limit segment S

meets M(B) in some point. Let x(y) be the point where the segment S meets the first time M(B). The point x(y) is not
on the boundary dB because
d(y,M(B)) >0 by (92); note that

d(x(y),0B) 2 d(x(y) ,y) (93)
because S being aminimal join from dB to x(y) contains y .
To finish the proof of (91) we choose in (91) X, =X(y). Now (93) and the definition of the maximal disc radius
functionr(.) imply

KXy, d(X(¥).¥)) O K(X; d(x,,9B)) = K(x,,r(x(¥))) (94)

Therefore asy O K(x,, d(x(y).y)) wehavey O K(x,, r(x,)).
This proves (91) and finishes the proof of the reconstruction theorem.

5 Appendix
We supply here in the appendix several lemmata used by us in the proofs of major theorems in the preceding
sections. Some of those lemmata may be considered to be of technical character while others may be of geometrical
interest per se.

LemmaA.1: Let B be acompact solid in R? and assume that 9B is piecewise C2-smooth or let B be a compact solid
in RN and assume 9B is C2 - smooth. Then the following claims hold:

« A) A limit of picas respective 0B is a non-extender respective 0B. Specifically alimit of picasis apica
or acurvature center of dB; it may be both e.g. a center of acircle.

* B) A limit of non-extenders respective dB is a nonextender respective 0B.

« C) A nonextender is either a pica or a curvature center respective dB. It may be both e.g. center of a
circle. If anonextender is not a picathen it must be a curvature center respective 0B.

« D) If theboundary 9B 0 B 0 R? is piecewise linear then every nonextender is apica.

Proof of lemma A.1: Wefirst prove lemmaA.1 A),B),C) in case 9B is a C2-smooth hypersurface of R™. In this case

231t is here necessary to choose a subsequence because there may exist several distinct minimal joins all being cluster points of the sequence S
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lemmaA.1 A),B),C) are contained in theorem 5.3 of [52]. Indeed the latter theorem 5.3 covers the more general case
where R" can be replaced by any complete n-dimensional Riemannian manifold. Thus for the proof of lemma A.1
A),B),C) in case B is a C2-smooth hypersurface of R"it is sufficient to refer to theorem 5.3 in [52].

Thus it remains to prove lemma A.1 A),B),C) in case 9B is only piecewise C2 here however employing the
additional assumption that RZIB@ B. We first prove now part A) of lemma A1.1. The other parts B) and C) will
further below be shown to be easy conclusions of part A).

Proof of lemmaA.1 A): We want to prove that
alimit of picas respective dB is a nonextender respective 0B (95)

We argue by contradiction and assume for this purpose that

there exists a sequence of picas ¢, respective 0B
whose limit is an extender respective 0B (96)

Each g, being a pica has at least two distinct nearest points p,;, p,,, on 9B. If now the sequence g, converges against
a point g, being a pica then there is nothing more to prove because then the limit g, is a nonextender. Let us
therefore assume the case that ¢, is not a pica. In that case the foot point sequences p,,;, p,,, converge against a
(unique) point p, being the foot point of g, this foot point is characterized by the subsequent distance property

d(9B,q,) = d(p, ,) (97)
We show now first that
the segment  seg[p,,d,] isnormal on 0B (98)

The point p, must be contained in a boundary edge. This edge is represented by a path b(t):[0,1] - R? being a
regular C2 parametrization, with b(0), b(1) being vertex points. This means each of the points b(0), b(1) is contained
in an edge adjacent to b[0,1]. Now

if p,=b(t,) isnot avertex point then it is easily seen that

the segment seg[d,,p,] being aminimal join to b(0,1) must be normal on b(0,1). (99)
Let us therefore assume that p, is a vertex point of b[0,1] say p,=b(1). The sequences p,;,p,, converge against p,.
Therefore there exists a disc K(p,,0) which contains no other boundary vertex except po24 and all p;, p,, for n
larger than a certain number N(d) are contained in K(p,,0). For each given n not both points p,;, p,, can coincide
with p,. Thus we can assume that p,; #p, for al n=N() 25 Therefore P,y Must be contained either in
b(0,1) ={b(t)/0<t<1} orintheadjacent edge c(0,1) = {c(t)/0 <t < 1} where b(1)=c(0). Inany case

we find a sequence of points p,,; which is contained say in b(0,1)%

and p,,; converges toward p,,. (100)
Now

by conclusion (99) for n = N(J)

the segment seg[q,,p,,;] Must be normal on b(0,1). (101)

Asthe normal vector of b[0,1] is continuous up to the boundary also the limit segment seg[q,,p,] is normal on b[0,1]
in b(1). This proves (98).

Note further down we shall make use of the property that every boundary edge can be viewed to be a subpart of an
enclosing open regular C2 smooth path. Thus say b[0,1] is subpath of a C? regular path B(—¢, 1+€). This subpath
property can be shown by extending the path b[0,1] C2-smooth and regular beyond the boundary points. We can
define the extension b(t) of the path b(t) by:

24This holds because the number of boundary verticesis finite.
This can be achieved by swapping p,, with p, asfar as this is necessary.

26| necessary we swap the notations for the edges c[0,1] and b[0,1]
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B(t) = b(t) for t< 1

andfor t =1 by
B(t) =b(1) +b'(1) (t - 1) + (/2)b (1) (t - 1)2 (102)
The extension beyond the point b(0) can be defined analogous.

It is easily seen that this extension B[ —¢, 1+€] is C2-smooth, regular and
free of self intersectionsif € is chosen sufficiently small. (103)

Let the segment seg[q,p,] be represented by an arc length parametrized path w(s) with w(0)=p, and
w(|p, — d, =0, Now if the point g, were a curvature center respective the foot point p, and the arc b[1-¢,1] then we
could show that ¢, is a nonextender respective the boundary arc b[1-¢,1]. This means for any y> 0 it is possible to
construct a path starting in b[1-¢,1] and ending in w(|p, — g, | +}) and this path is shorter than [p, - q,| + y The
latter claim follows e.g. from a more genera result in[52] which gives an extension of a theorem of Jacobi.
Therefore and because seg[d,,p,] isaminimal joinfromdBtoq, :

the assumption that g, is a curvature center respective the point
P,=b(1) andthearc b[1-¢,1] impliesthat g, is nonextender. (104)

Therefore our initia contradiction assumption (96) saying that g, is an extender respective 0B leads us to conclude
that the point g, is not a curvature center respective the arc b[1-¢,1]. Now if g, is not a curvature center of b(1) then:

the normal map

or.t) = b(t) + r N(b(t))*’

yields for sufficiently small numbers 3,0 >0

adiffeomorphism

QU E[r-Br Bl X [1-w1] - D={@(rt)/ () O U8

with @(r,, 1) = q, (105)
Now choosing some sufficiently small p then in view of (100) we can assume that al picas q,, in K(q,,p) have their
foot point p,,; in b(1-A,1) and the points g, must be in Dy, if p is sufficiently small. Therefore and because of the
diffeomorphy property (105) the other foot point p,, of g,, must be in the adjacent boundary arc c[0,1)%. Next we
show that p,,, cannot agree with c(0)=b(1)=p,. This follows from a sublemma which we state now:

SublemmaA.1A": Let f:[0,1]" — R™1 be aregular C2-smooth hypersurface patch. Denote the surface normal at f(x)
by N(f(x)) and assume that for some x in (0,2)" and for some r,>0 thesegment { f(x,)+rN(f(x))/ 0<r<r,}
does not contain a curvature center respective the point f(x ) on this surface patch. Then there exists a disc K(x,€) in
R" around x, and an interval (r,- 8, r + &) such that for all (xr)0D,=(K(x,¢&) x (r,—8r,+8)) the normal
segments g(x,r) ={ f(x) + sN(f(x)) / 0<s<r} are distance minimal to the subpatch P, ={ f(x) / xOK(x,€) }. This
implies that for any (x,r) 0 D any segment g joining the point f(x)+rN(f(x)) with P, islonger than g(x,r) unless g agrees
with g(x,r)%C.

A proof of this sublemmais not very difficult and can be given by exploiting the local diffeomorphy of the normal
map onto the neighborhood of a point which is not a curvature center. This sublemma can also be viewed as a
special case of a combination of two results saying that geodesics emanating normal from a C2- smooth
hypersurface are locally distance minimal up to their first focal point and that if y is not a focal point respective

27Here N(b(t)) denotes the normal vector of the curve b(t) at the foot point b(t).

ZNote that this diffeomorphism is defined using the restriction of a diffeomorphism which is originally defined on a larger open set
Ug(r-Br +B) * (1- 2 0,1+ 2 w) where @(r,t) is now defined for t > 1 is now defined by using the extension b(t) described in ( 102).

#Note we use here that (105) guarantees that the normals emanating from b(1-2c,1] do not intersect in D,.

This implication holds because of the following argument: First we observe that the sublemma implies with the interval (r,=8r,+d) being open that for any
(x,r) 0D, the point g(x,r) = f(x)+rN(f(x) ) is an extender with respect to P_ . This excludes that there exists some other minimal join from q(x, ) to P_ besides
g(x.r).
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some submanifold Sthen awhole open neighborhood of y stays free of focal points respective Sc.f. [52]. Therefore
we don’t give here a proof of this sublemma.

The sublemma implies in our situation that if for sufficiently large indices n the foot points p,;, b, are both on
b[1,1-A) then p,=p,,- This yields a contradiction because p,; # p,,- This implies in our situation that for
sufficiently large n the point p,, is unequa to q,=c(0), hence p,, is in the open interval ¢(0,1). Now recal g,
converges to d, therefore for sufficiently large numbers n the point g, must either be an interior point of the
topological disc Dy or g, is on the segment { @(r,1) /ry<r<r +B}. Clearly for large enough n the foot point
P2 0¢(0,1) is outside Dy, and the segments w,=seg[q,,p,,,] Must meet the boundary of the topological disc Dy, in
some  point  z, Using tha p,, is in c(01) and that w, converges toward the segment
seg[b(1),q,) ={@(r,1) /0<r<r,} itis not difficult to see that for large enough numbers n the the intersection
point z, must be located on the segment { ¢(r,1) / O<r<r+d}. Using that the segment seg(z, p,,] isaminimal
join to the boundary 0B it is also not hard to prove that the segment seg[b(1),z] cannot be extended as a minimal
join to the boundary 0B beyond the point z, . Therefore and because z, must converge to g, with g,, it follows that
the point g, must be a nonextender respective 0B. Thus we get a contradiction with our assumption that g, is an
extender. This showsthat alimit of picas must be a nonextender and proves the first part of lemmaA.1A).

It still remains to show that g, must be a curvature center respective its foot point if it is not a pica. Let us assume
that g, is not a curvature center respective its foot point b(l) on any of both adjacent arcs
b(0,1] ={b(s)/0<s<1},c[0,1) ={c(s)/0<s< 1} and let us derive a contradiction. Precisely we shall show that
g, is the first curvature center (on the segment seg[b(1), q, ] ) respective the foot point b(1) on at least one of the
two arcs b(0,1] , c[0,1) . For thiswe need to return to the considerations in the preceding proof. The preceding proof
used 3 assumptions

1) g, isalimit of picas

2) q, itself isnot apica

3) q, is an extender

We till need assumption 1) and 2) for the proof of the second part of lemma A.1A). The only locations in the
preceding proof where we used the assumption that g, is an extender was (except at the very end) when we used it to
conclude that g, is not a curvature center respective p, on b[0,1] and p, on ¢[0,1]. In this proof we can now assume
directly the non-curvature center property of g, and we don’t need the nonextender property. Recall the picas g, are
related to minimal joins (segments) seg[p,,;. ], SedlP,,: Aol Which converge to a minimal join being the segment
seg[ b(1),q,]. Because of this minimal length property the open segment seg[b(1), q,) which does not include g,
cannot contain any curvature center respective the foot point g, on any of the arcs b(0,1], c[1,0) by (104). Arguing
by contradiction we assume now also that g, is not a curvature center respective the point b(1) = c(0) on both arcs
b(0,1], c[0,1). Therefore analogue to (105) we can now describe a diffeomorphism y(r,s): U, — D employing the
normal map with normals of the path c(s). Note that here now Yi(r ;, 0) = g, and also like in proof of (98) we get now
{w(r,0)/0=<r<r,} =segb(1),q,]. Inthe proof above ( with g, converging to q,) the segments seg[p,,», g,] being
subparts of normals on the curve c[0,1) were shown to intersect { Y(r,0)/r - B<r<r +B}. This yields a
contradiction with the assumption that  : U, - D, is a diffeomorphism. This proves that g, must be a curvature
center of itsfoot point respective at least one of the arcs b(0,1],¢[0,1). This completes the proof of lemmaA.1A).

Proof of Lemma A.1B): Let g, be a sequence of nonextenders converging against a limit point ¢,. We have to
prove that g, is a non-extender. By theorem 2A) every nonextender is limit of a sequence of picas. Therefore for

every n we can find a pica g within distance 1/n to q,,. Together with the sequence g, also the sequence of picas g,js
converging to g,,. Thus by lemmaA.1A) the limit g, is a nonextender. This proves lemmaA.1B).

Proof of Lemma A.1C): By theorem 2A) every nonextender is alimit of picas. LemmaA.1A) states that alimit of
picas has the properties claimed by lemma A.1C) for any nonextender. Therefore the combination of lemma A.1A)
and theorem 2A) prove lemmaA.1C).

Proof of Lemma A.1D): Lemma A.1D) is a special case of lemma A.2B). Therefore lemma A.1D) follows from
lemma A.2 given below. This proveslemma A.1D) and completes the proof of lemmaA.1.
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We finally present a result which pertains to the practically important specia case where the solid B is contained in
R3 and where 0B is piecewise linear. This means the solid’s boundary consists of planar facets with edges being
straight line segments. The subsequent lemma A.2 characterizes nonextenders and it also describes properties of
limit points of nonextenders.

Lemma A.2: Let B be acompact solid in R3 and assume that 0B is piecewise linear. Then the following statements
hold :

< A) If alimit of picasis not apicathen its nearest point g on 0B is avertex point of dBi.e. g is contained
in more than two boundary planes.

 B) Every nonextender respective 0B isapica

Proof of Lemma A.2: Every boundary plane P, has a unique interior normal N;. The number of those normals is
finite. Let & > 0 be the smallest angle built by any two distinct (interior) boundary normals of 9B.

Proof of LemmaA.2 A: Wefirst show part A) of lemmaA.2. For this we show that:

If alimit of picasis not apicathen itsfoot point on dB is avertex point i.e. the foot (106)
point is contained in more than two boundary planes.

To prove (106) we assume that its negation is true and derive a contradiction. Therefore assume there exists a
sequence of picas ¢, converging to a non-pica d, and the foot point p, of g, is contained in at most two hyperplanes

3L Clearly asq, isnot apica

the minimal joins from g, to the boundary must

converge against the segment joining g, with p,,. (107)
As p, is not a vertex there exists a small disc K(p,,d) such that K(p,,0) meets at most two hyperplanes P,, P, and

thereis no vertex in K(pg,9). It is obvious that K(p,,0) must meet at least two boundary planes with distinct normals
because

the foot point p;, of g, cannot be an interior
point of aboundary plane piece P; with normal N;. (108)

As otherwise (for sufficiently large numbers n) the minimal segments g,, joining ¢, with 0B are either parallel to N,
or built an angle ang,, larger than some positive number k with N; where N, is parallel to the segment g, joining
with p,. This would yield a contradiction with the assumption (107) because the fact that the q,, are picas together
with (107) implies that the angles ang,, attain arbitrarily small positive vaues. This proves (108). Therefore we can
now assume that K(p,,0) meets precisely two hyperplanes P;, P, with normals N4, N, respectively. Let y be the
angle built by the two normas N4, N,. Asthe limit of the picas g, is not a pica and as the foot points p,,;, p,, must
converge against p, there exists adisc K(q,,€) and adisc K(p,,n) such that:

For dl g, in K(q,, €) the foot points p,;, p,, arein K(p,, n) and al pairs

of segments seg[q,,,p,]: se9lq,,P,,] build an angle smaller than y/10. (109)
It can also be arranged that € in (109) can be chosen so small that :
The convex hull CO of K(p,n) O K(qg,e) meetsonly the planes P, P,. (110)

Here (110) holds because seg[p,,d,]\{ P, } does not meet 0B. Let ustake any picaq, in K(q,€). The point g, has
(at least) two distinct foot points in K(p,n). At most one of the two segments can be normal on a boundary
hyperplane because of the angle provision (109). Assume that say p,,; is an interior point of one of the two planes
say of P132 The other foot point p,, can not be an interior point of P, because of the angle provision (109).
Thereforep,, U P n P,nK(p,,n) . Thus

length(sea[a,Prol) = VI, = PP + 1Py = PP > length(seg] p: Prpl) (111)

31To simplify our notation we shall call a nearest boundary point of any point q the foot point of g.

3t p,, isaninterior point of P, we swap the names of the two planes.
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a contradiction with the assumption that p,;, p,,, ae both foot points of . These considerations imply that both
points p,,;, P, Must be edge points thus

{pnlypnz} 0 F)]_m PZD K(p01r]) .
Now

The segment seg[p,,;,P,,p] iscontained in D = P, n P,0n K(p,,Nn) (112)

because D is convex as an intersection of convex sets. The planar triangle W with the vertices p,;, Py, O IS
contained in the convex set CO defined in (110). The triangle W has two edges seg[q,,.p,;], se9lq,,.p,,] of equal
length. Clearly by (112) the mid point m of seg[p,;,p,,] isin dB. Therefore the segment seg[m,q,,] yields a boundary
join shorter than say seg[q,,,p,;], @ contradiction. This shows that the foot point p, must be vertex point i.e. p,
meets more than two boundary planes. This proves part A) of lemmaA.2.
Remark: Actually we also proved above that if the segment angle of a pica is smaller than some positive number
then the foot points of this pica must be located close to a vertex point. Moreover analyzing the preceding geometric

considerations it is not difficult to derive an estimation for the distance of a pica foot point to the nearest boundary
vertex. This estimation would incorporate the segment angle of the pica

Proof of Lemma A.2 B: Using lemmaA.2 A) we show now lemmaA.2 B). That is we prove that a nonextender is
necessarily a pica if 0B is piecewise linear. For the proof we argue by contradiction. Namely we derive a
contradiction from the negation of lemma A.2 B). For this purpose we assume that there exists a nonextender ¢,
which is not apica. By theorem 2 the picas are dense in the set of nonextenders, thus g, is limit of a sequence of
picas g,. By lemma A.2 A) the foot point p, of g, is a boundary vertex. As q, is a nonextender respective 0B we
know that for any € > 0 the extension of seg[p,,q,] by length € to a point g, (beyond ) is not aminimal join to the
boundary. Therefore there exists aminimal join g, from g, to the boundary which meets 0B in a point p.. The point
p is different from p, as otherwise the extension of seg[p,,q,] would be minimal join to the boundary. Asq, is not
a pica the segment g, is converging towards seg[p,,d,] and p, converges toward p, if € converges to 0. Since the
number of boundary vertices is finite there exists a positive number & such that K(p,,0) contains only the boundary
vertex p,. Every segment joining a point of dBnK(p,,d) with the vertex p, is completely contained in
0BnK( po,6)33. Now choose the ¢ for the extension of seg[p,,q,] so small that the foot point p, of g, (defined
above) is contained say in dBnK(p,, 8/10) . The segment seg[p,,p| as well asits extension by length /3 beyond p,
are contained in dBnK(p,,d). Let p, be the end point of this extension of e=seg[p,,p,]. If € is not normal on
seg[p,,P, then it is easily seen that e contains a point py such that seg[p,d] yields a shorter join to the boundary
than the minimal join seg[p,,q,] a contradiction. Thus seg[p,d.] must be orthogonal on e. Now the points p,,p,,d
built atriangle with arectangular angle at vertex p,. Thistriangle contains a segment g which joinsqwitheand gis
parallel to seg[py,q,]. Clearly g is shorter than the minimal join seg[q,,p,] unless g and seg[d,,p,] agree. Thus g and
seg[q,,Pp,] must agree. However this is not possible because the assumption g being a nonextender implied that p,
and p, are distinct c.f. above. Therefore we get a contradiction with our assumption of the proof of lemma A.2 B).
This completes the proof of lemmaA.2 B).
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