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Abstract

This paper introduces a method to extract ‘Shape-DNA’, a numerical fingerprint or signature, of any 2d or 3d manifold (surface or solid) by

taking the eigenvalues (i.e. the spectrum) of its Laplace–Beltrami operator. Employing the Laplace–Beltrami spectra (not the spectra of the mesh

Laplacian) as fingerprints of surfaces and solids is a novel approach. Since the spectrum is an isometry invariant, it is independent of the object’s

representation including parametrization and spatial position. Additionally, the eigenvalues can be normalized so that uniform scaling factors for

the geometric objects can be obtained easily. Therefore, checking if two objects are isometric needs no prior alignment (registration/localization)

of the objects but only a comparison of their spectra. In this paper, we describe the computation of the spectra and their comparison for objects

represented by NURBS or other parametrized surfaces (possibly glued to each other), polygonal meshes as well as solid polyhedra. Exploiting the

isometry invariance of the Laplace–Beltrami operator we succeed in computing eigenvalues for smoothly bounded objects without discretization

errors caused by approximation of the boundary. Furthermore, we present two non-isometric but isospectral solids that cannot be distinguished by

the spectra of their bodies and present evidence that the spectra of their boundary shells can tell them apart. Moreover, we show the rapid

convergence of the heat trace series and demonstrate that it is computationally feasible to extract geometrical data such as the volume, the

boundary length and even the Euler characteristic from the numerically calculated eigenvalues. This fact not only confirms the accuracy of our

computed eigenvalues, but also underlines the geometrical importance of the spectrum. With the help of this Shape-DNA, it is possible to support

copyright protection, database retrieval and quality assessment of digital data representing surfaces and solids.

A patent application based on ideas presented in this paper is pending.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The characterization and design of the shape of 3d-objects

are central problems in computer graphics and geometric

modeling. The development of software and hardware tools to

design and visualize the shape of 3d-objects has advanced

rapidly during the past twenty years. Nonetheless, fundamental

problems pertaining to the characterization of shape are still

widely unresolved. It is, for example, a basic question to

quickly identify and retrieve a given object stored in a huge

database or to find all similarly shaped objects. During the past

forty years, a vast number of shape matching and searching

techniques have been developed (e.g. using moments, spherical
0010-4485//$ - see front matter q 2005 Elsevier Ltd. All rights reserved.
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harmonics or Reeb graphs—a recent survey can be found in

Iyer et al. [39], see also [30]). It should be pointed out that most

approaches dealing with shape matching describe procedures

to realign the geometric objects, usually called localization or

registration (cf. [53,60]), and work only on a specific

representation (mainly polygonal meshes) of the object.

Other techniques describe subdivision or decomposition of an

object into smaller features (e.g. [9] or [37]) that are then

compared in a second step.

The point-set of a solid 3d-object with smooth boundary

may be described in very different ways (cf. [65]), for example

in boundary representation (B-Rep) using NURBS surface

patches. This may cause difficulties to decide if two objects

have the same or different shapes. Even when restricted to

NURBS surfaces, it is not easy to decide if the given objects are

similar in their shape. A simple comparison of the control

points used to represent the boundary surfaces does not help at

all, because identical patches can be represented with different

control points. Both patches first need to be represented with
Computer-Aided Design 38 (2006) 342–366
www.elsevier.com/locate/cad

http://www.elsevier.com/locate/cad


M. Reuter et al. / Computer-Aided Design 38 (2006) 342–366 343
the same basis functions implying equal knot vectors and equal

degrees of the employed NURBS basis functions. The problem

becomes even more complicated if we consider the possibility

that the solid’s boundary surfaces might be represented in

various other ways, e.g. by trigonometric functions, by

implicitly defined functions or by polygonal meshes (planar

polygonal faces), that have to be compared with each other.

In some of these cases, the problem of identifying shapes

(for example, to protect the copyright of the designer) has been

approached with the help of watermarks. For this purpose,

visible or invisible watermark information is embedded into

the representation or geometry of an object. Later on, this

information can be retrieved and the object can be identified.

This is of special interest when dealing with delicate high

precision material, e.g. turbine blades, whose design needs

major research effort and expensive investments. Even though

NURBS patches are very popular today, most watermark

techniques deal with polygonal meshes only. Often the

watermark data is embedded into these meshes by slightly

modifying the vertex location, the connectivity of the mesh or

the frequency domain employing mesh-spectral analysis (cf.

[6,49]). For NURBS surfaces watermarking is more difficult

and only very few algorithms exist. An algorithm proposed by

Ohbuchi et al. [48] does not change the surface, but is not very

robust. Generally, watermarks can be destroyed by a

representation change or by a reparametrization of the object,

if they are not embedded into the geometry. On the other hand,

embedding data into the geometry rather than into the

representation changes the shape of the object which is

unacceptable in many cases. It should be noted that the

watermarking technique is limited to the comparison of

watermark information, which in general is not related to the

shape. Therefore, it cannot be used for shape matching but only

for the identification of previously marked objects.

A superior identification method avoiding both problems of

watermarking (i.e. geometry changes or representation

dependency) is to identify the shape of an object by geometric

invariants that we will call fingerprints or signatures. An

example for a fingerprint of shape intrinsic information to

identify shape via registration/alignment of umbilics can be

found in [42] or [43]. However, our approach is different

because we use sets of geometric invariants that are sufficiently

complete to identify isometric objects so we can avoid

realignment procedures as a safeguard for tests of identical

shape. Of course, fingerprint techniques cannot distinguish

between several copies of the same object, since they only

depend on the shape. In such a case, watermarks have to be

applied in order to discriminate identical copies. Nevertheless,

an advantage of the use of shape related fingerprints is that

shape can be compared indirectly through the fingerprints

(especially if similar shapes lead to similar fingerprints). In

addition to shape identification, the fingerprint technique can

therefore be used for shape matching.

Shape intrinsic information does not depend on the given

representation of the shape and can be understood as a

fingerprint of the shape (if enough information is contained).

Many geometric shape invariants (e.g. circumference, surface
area, volume, bounding sphere or eigenvalues of the inertia

tensor) have strong limitations with respect to the amount of

completeness up to which these invariants determine the shape

of an object. Therefore, we propose the following properties

that optimally should be fulfilled by a shape fingerprint (e.g. a

vector of numbers/shape invariants associated with the given

object):

1. [ISOMETRY]: Congruent solids (or isometric sur-

faces) should have the same finger-

print independently of the object’s

given representation and location.

Therefore, the fingerprint should be

an isometry invariant.

2. [SCALING]: For some applications, it is necessary

that the fingerprint is independent of

the object’s size, therefore the fin-

gerprint should optionally be scaling

invariant.

3. [SIMILARITY]: Similarly, shaped solids should have

similar fingerprints. The fingerprint

should depend continuously on shape

deformations.

4. [EFFICIENCY]: The effort needed to compute those

fingerprints should be reasonable.

5. [COMPLETENESS]: Ideally, those fingerprints should

give a complete characterization of

the shape, thus representing the shape

uniquely. One step further it would

be desirable that those fingerprints

could be used to reconstruct the solid.

6. [COMPRESSION]: In addition it would also be desirable

that the fingerprint data should not be

redundant, i.e. a part of it could not

be computed from the rest of the data.

7. [PHYSICALITY]: Furthermore, it would be nice if an

intuitive geometric or physical

interpretation of the meaning of the

fingerprints would be available.

Concerning property [ISOMETRY] let us give the

following definitions:

Definition 1 (Isometry)

Two geometric objects are isometric if a homeomorphism from

one to the other exists preserving (geodesic) distances, i.e.

mapping curves to curves with equal arc length. This

homeomorphism is then called an isometry.

Definition 2 (Congruency)

Two geometric objects are congruent if they can be

transformed into each other by rigid motions (translations

and rotations) as well as reflections.

It should be noted that isometric planar domains in 2d and

isometric solids in 3d Euclidean space are already uniquely

determined in their respective space up to rigid motions and

reflections. For planar shapes and 3d-solids congruency and
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isometry are the same. Surfaces on the other hand that are bend

or folded without stretching (without changing the metric) stay

isometric even though they are not congruent. The property

[ISOMETRY] (and of course [SIMILARITY]) is important

in situations where near isometric surfaces like hands with

different finger positions or faces with different expressions are

to be compared and identified. See, e.g. [27] for a method using

discrete geodesic distances and multidimensional scaling to

generate similar signature surfaces (that still need to be aligned

for final comparison), and see [14] for an application to face

recognition. An isometry invariant fingerprint is often desired

in shape matching, since it depends

† only on the (intrinsic) shape, independent of any represen-

tation;

† not on the actual embedding and is therefore independent

of the spatial position and isometric deformation of the

object.

Very often invariants are used to classify objects. For

example in knot theory, a branch of topology, knot invariants

(e.g. the Alexander polynomial or the more recent Jones and

the Homfly polynomials) are used to distinguish knotted space

curves (cf. [1]). For surfaces there exist, for example,

topological invariants (cf. [57]) such as homotopy invariants

including, e.g. homotopy groups and homology groups or the

well-known Euler characteristic. Another important topologi-

cal invariant of a manifold is its orientability (being a non-

homotopic invariant, because the non-orientable Moebius strip

and the orientable cylinder have the circle as deformation

retract and are therefore homotopic to it). Although all these

topological shape invariants are interesting and useful, they

cannot distinguish any two homeomorphic objects such as two

3d-solids, e.g. obtained by deforming a topological full 3d-

disk.

There exist theoretical invariants determining the isometry

type of a surface or solid completely up to isometry. Indeed, the

first fundamental tensor (defined independently of a parame-

trization) is a complete isometry invariant [25]. However, this

invariant can generally not be used to check if two given

parametrizations represent isometric manifolds. In order to

compare this invariant for two objects, they first have to be

parametrized on a common parameter space. These parame-

trizations have to be constructed in a way that they map the

same point in parameter space to the two corresponding points

on each manifold. This task is as difficult as finding the

isometry itself, which generally is a very difficult problem. The

first fundamental tensor can be used to check if a

diffeomorphism is an isometry. But even this task is difficult,

as it requires checking every point.

A manifold can theoretically be determined completely up

to translation and rotation by the first and the second

fundamental tensor [25]. Like before, those two tensors do

not provide an easy tool to check if two distinct parametriza-

tions refer to congruent manifolds. The medial axis transform

(MAT) (defined uniquely for a solid body) provides a shape

invariant that is a complete shape descriptor (cf. reconstruction
theorem [64–66]). Using the MAT for testing the congruence

of two given 3d-solids would also require checking if the

respective medial axis sets (usually collections of surface

patches) are congruent, a task that again is not easy at all in

general. Therefore, all shape invariants listed above cannot be

used efficiently to detect if two distinct geometrical object

representations refer to congruent or isometric objects. We

think that this paper offers a remedy for the aforementioned

difficulties occurring in shape comparison problems. This holds

because the shape invariants presented in this paper can be used

efficiently for shape comparison (once they have been

computed).

This paper proposes to use the sequence of eigenvalues

(spectrum) of the Laplace operator of a planar domain or 3d-

solid or the Laplace–Beltrami operator of a surface or

parametrized solid in Euclidean space as a fingerprint. The

Laplace operator can be seen as the special case of

the Laplace–Beltrami operator with a Euclidean metric.

These Laplace operators are linear differential operators

defined on a corresponding vector space of differentiable

functions, the latter being defined on a domain in Euclidean

space or on a Riemannian manifold, respectively. Those

differentiable functions are supposed to be zero on the

boundary of the surface or of the domain in case the boundary

is not empty (Dirichlet boundary condition). The Neumann

boundary condition forces their derivatives in the normal

direction of the boundary curve to be a fixed function or to be

constantly zero. The Laplace operators assign the trace of their

Hessian to the latter functions (defined on the domain or on the

surface). In the surface case, the Hessian must be defined

invariantly of the surface parametrization using only the

Riemannian metric of the surface.

This fingerprint (i.e. the eigenvalues) can be calculated for

different object representations in different dimensions and can

even be calculated for grayscale or color images. We consider a

gray scale image as a surface defined by the graph of a height

function being the gray scale intensity function of the image.

The color image can, e.g. be understood as a surface (two-

manifold) in a five-dimensional Euclidean space whose

coordinates include the intensity parameters of the red, green,

blue values assigned to any (x, y) pixel of the image. It is

possible as well to understand other even higher dimensional

signals as height functions and therefore as manifolds, whose

Laplace–Beltrami spectra can be computed. Another advan-

tage of this method is that it can even be applied to solids

containing cavities (solids bounded by several not connected

surfaces), for example, an ice-cube containing fully enclosed

bubbles. Most techniques only working on boundary represen-

tations, not on the solid itself, have difficulties with several

boundary components. With our method, one can compare the

2d boundary as well as the 3d volume for two given solids.

The fingerprint presented here fulfills the desired properties

above (with the only exception of [COMPLETENESS]). Since

the eigenvalues are isometry invariants, this fingerprint is

independent of the objects representation (especially its

parametrization), its spatial position and, as we will see later,

even of the object’s size [SCALING] (if desired). This
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isometry invariance makes registration or localization of the

objects completely unnecessary. The isometry invariance is

very restrictive compared to the topological invariance. As

mentioned before, isometry even determines the congruence of

objects in important cases such as planar shapes or 3d-solids. In

other words, if limited to these very common solid objects,

their shapes are uniquely determined by their isometry class.

The fingerprint proposed here consists of a family of non-

negative numbers (the eigenvalues) that can be compared

easily and fast, permitting this approach to be used in time-

critical applications such as database retrieval. Because the

spectrum of the Laplace–Beltrami operator contains intrinsic

shape information we call it ‘Shape-DNA’. We will show that

this Shape-DNA can be used (like DNA-tests) to identify

objects in practical applications. As in real life, the DNA does

not completely characterize a subject. As we will discuss later

identical twins exist with different shape but exactly the same

Shape-DNA. Even though these twins are shaped differently

they still have quite a few common geometric properties

(exactly those properties that are determined by the spectrum).

It should be noted that in real life human fingerprints

(determined by phenotype) can distinguish identical twins,

while DNA-tests (genotype) cannot. Therefore, we think that

Shape-DNA is the more appropriate term. Beyond the

identification of shapes, the Shape-DNA can even be used to

detect similarities.

A special name for the Laplace–Beltrami spectra is even

helpful to distinguish it from other spectra. To avoid any

misunderstanding, note that the continuous Laplace–Bel-

trami operator does not operate on any mesh vertices, but

rather on the underlying manifold itself. It is therefore

different from discrete Laplacians on graphs or meshes.

Even though these discrete Laplacians have been used for,

e.g. dimensionality reduction [5] or mesh compression [41],

the introduction of our computation of the Laplace–Beltrami

spectra of the underlying manifolds in the areas of

geometric modeling—CAD in particular and in computer

graphics in general—is completely new. The only excep-

tions are our recent proceedings publication [56] outlining

briefly some of the ideas and results presented in this paper

and [65] containing a sketchy description of some basic

ideas and goals. More details and background can be found

in [55]. Moreover, the application of the Laplace–Beltrami

spectra as Shape-DNA in order to discriminate and search

for objects in geometric databases is new (cf. our german

patent application [67]). Although a considerable amount of

theoretical research has been done in geometry on the

Laplace–Beltrami operator, very little work dealing with

computational research exists (see e.g. Huntebrinker [38] for

a numerical computation of the Laplace–Beltrami spectrum

on 3d hyperbolic spaces).

One of the reasons why the spectra of the continuous

Laplace and especially the Laplace–Beltrami operator have not

yet been considered in the area of geometric modeling and

computer graphics is that their computation is not easy at all,

with respect to the theoretical effort (employing Riemannian

geometry), and somewhat cumbersome with respect to the
numerical effort involved. However, with the recent and

continuing advancement of hardware development, the

computations needed to determine surface spectra (e.g. the

first 1000 or more eigenvalues) of the Laplace–Beltrami

operator have become conveniently feasible even on a fairly

modest personal computer. This shows that the requested

[EFFICIENCY] can be achieved as well. Improvements

concerning the efficient computation of the spectrum are also

foreseeable.

We shall present this paper in a self-contained way such that

it should be accessible to a researcher in geometric modeling

who is not an expert on the tools from partial differential

equations and differential geometry used here. Therefore, we

will review some concepts from analysis and elements from

differential geometry used for the Laplace–Beltrami operator

and its properties (Section 2). We also need some concepts

from numerical analysis on finite element methods used to

compute solutions for partial differential equations (Section 3)

and describe some techniques (like meshing) needed for the

actual implementation (Section 4). Then we present a method

to numerically extract geometric data from the eigenvalues

(Section 5) and show how the Shape-DNA can be used to

identify shapes and detect similarities for use in innovative

applications (Section 6).
2. Theoretical background

In this section we will explain the theoretical background

that is needed to understand the spectrum of the Laplace

operator and its computation.

Let f be a real-valued function, with f2C2, defined on a

Riemannian manifold M (differentiable manifold with Rie-

mannian metric, cf. Berger [7]). With another function g

defined like f we define the Nabla operator V (that will be

needed later for the variational formulation) and the Laplace–

Beltrami operator D to be

Vðf ; gÞdhgrad f ; grad gi Df ddivðgrad f Þ (1)

with h , i being the scalar product, grad f the gradient of f and div

the divergence on the manifold [17].

The Nabla operator and the Laplace–Beltrami operator are

linear differential operators. They can be calculated in local

coordinates. Given a local parametrization

j : Rn/R
nCk (2)

of a submanifold M of RnCk with

gij :Z hvij; vjji; G :Z ðgijÞ; W :Z
ffiffiffiffiffiffiffiffiffiffiffi
det G

p
;

ðgijÞ :ZGK1:

(3)
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(where i, jZ1,.,n and det denotes the determinant), we get:

Vðf ; gÞZ
X
i;j

gijvifvjg and

Df Z
1

W

X
i;j

viðg
ijWvjf Þ

(4)

If M is a domain in the Euclidean plane M3R
2, the

Laplace–Beltrami operator reduces to the well-known Lapla-

cian:

Df Z
v2f

ðvxÞ2
C

v2f

ðvyÞ2
(5)

The Helmholtz equation (also known as the Laplacian

eigenvalue problem) is stated as

Df ZKlf : (6)

The solutions of this equation represent the spatial part of

the solutions of the wave equation. In the surface case f(u, v) in

Eq. (6) can be understood as the natural vibration form (also

eigenfunction) of a homogeneous membrane with the

eigenvalue l. The solutions of the general vibration problem

are the solutions f(u, v) of this differential equation on the

surface. Any constants of the material are ignored. The

standard boundary condition of a fixed membrane is fh0 on

the boundary of the surface domain (Dirichlet boundary

condition) (see Fig. 1 for two eigenfunctions of the disk).

Because of this physical interpretation, the question whether

the eigenvalues of the Laplace operator determine the shape of

a planar domain, has been rephrased by the late mathematician

L. Bers in a terse, impressively concise and pictorial way: ‘Can

one hear the shape of a drum?’ (cf. Protter [54] for a historic

account). Another important boundary condition (namely the

Neumann condition) does not force the function to a given

value on the boundary but rather forces its derivative in the

normal direction of the boundary curve to a fixed function

(often to zero). Since the boundary of a membrane can

therefore vibrate freely this condition is sometimes called

natural boundary condition (instead of forced or essential as for

the Dirichlet condition). The advantage of the Neumann

condition is that a small hole in the surface (e.g. a missing

triangle) does not change the spectrum as much as in the case of

the Dirichlet condition. For manifolds without boundary, the

spectrum is of course equal to the spectrum with Dirichlet

boundary condition.
Fig. 1. Eigenfunction 30 and 50 of the disk.
2.1. Properties of the spectrum

The following paragraphs will describe well-known results

on the Laplace–Beltrami operator.

† The spectrum is defined to be the family of eigenvalues of

the Helmholtz equation (Eq. (6)), consisting of a diverging

sequence 0%l1%l2%/[CN, with each eigenvalue

repeated according to its multiplicity and with each

associated finite dimensional eigenspace [8, p. 142]. In

the case of a closed manifold without a boundary, the first

eigenvalue l1 is always equal to zero, because in this case

the constant functions are non-trivial solutions of the

Helmholtz equation. If a Dirichlet boundary exists, the first

eigenvalue is always greater than zero, since the only

constant solution is trivial (because of the boundary

condition). Generally, the first eigenvalue is always simple

and the corresponding eigenfunction has no nodal lines

(zero sets of the function). The nodal lines of the nth

eigenfunction subdivide the domain into maximal n

subdomains [20]. In case only the Neumann boundary

condition is used, the first eigenvalue will always be zero

with all constant eigenfunctions.

† The spectrum is an isometric invariant as it only depends on

the gradient and divergence which in turn are defined to be

dependent only on the Riemannian structure of the manifold

(Eq. (4)). This implies property [ISOMETRY].

† Furthermore, we know that scaling a n-dimensional

manifold by the factor a results in scaled eigenvalues by

the factor 1/a2. Therefore, by normalizing the eigenvalues,

shape can be compared regardless of the object’s scale

(property [SCALING]). This fact can be proved quite easily

for any dimension n.

Let M be a compact n-dimensional Riemannian manifold of

class CN with the local parametrization h : Rn/R
nCk. The

scaled manifold with the parametrization �hdah possesses the

partial derivatives

vk �hZ avkh ðkZ 1;.; nÞ implying �gij Z
1

a2
gij and

�W Z a2W ;

using the notation defined in Eq. (3).

With u being a solution to

DhuZ
1

W

X
i;j

viðg
ijW vjuÞZKlu

we have found u as a solution to

D �huZ �WK1
X
i;j

við �g
ij �W vjuÞZ

1

a2W

X
i;j

viðg
ijW vjuÞZK

1

a2
lu:

† The spectrum depends continuously on the shape of the

membrane [20], thus complying with property [SIMI-

LARITY]. Moreover, it can be shown with similar
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arguments that the spectrum depends continuously on the

Riemannian metric of the manifold in general.

† The numerical computation of the spectrum as described

later in Section 3 can already be done with a standard

personal computer, therefore the requested [EFFICIENCY]

can be satisfied as well.

† The property [COMPLETENESS] is not fulfilled by

the spectrum, because some non-isometric manifolds

with the same spectrum exist (see Section 2.2 for more

details).

† The question if a sequence of n real numbers (SZ{a1Z0!
a2%a3%/%an}) can be the beginning of the spectrum of

a compact Riemannian manifold X has been discussed by

Colin de Verdière [19]. It is shown that for any such finite

sequence S, there always exists a compact Riemannian

manifold X with dim(X)R3 always exists realizing S as the

beginning of its Laplace spectrum. This result also means

that given any positive integer n, a Riemannian manifold

exists, such that the multiplicity of the first non-zero

eigenvalue is n. In the case of a closed Riemannian surface

(dim(X)Z2), there are bounds to the multiplicities

depending linearly on the genus. However, in the case of

a surface, the result by Colin de Verdière holds also for

finite sequences of the form SZ{a1Z0!a2!a3!/!
an}. These results are interesting in the context of property

[COMPRESSION]. We can now prove Assertion 1.

Assertion 1 (Mutual independency of eigenvalues)

An arbitrary eigenvalue lk of a compact Riemannian

manifold (M, g) cannot be computed from a finite number

of other eigenvalues of (M, g) in general (i.e. if the manifold

is unknown). Precisely, it is not possible to find a function

h(S) (called redundancy function) depending on a finite

subsequence S of the eigenvalues l1/ln, that computes a

special eigenvalue lk;S so that for all compact Rieman-

nian manifolds containing S in their spectra, lk is also

contained in their spectra (at the same position k). We will

prove this indirectly.

Proof. Let h(S) be a redundancy function as stated above

computing a lk;S. If we construct the smallest sequence S0

of values containing lk as well as S then S0 is still finite. We

can violate the redundancy h(S) by replacing lk with a

different value and call this new sequence S1. Because S1

violates the redundancy h (that was valid for all manifolds

containing S in their spectra), it cannot be the beginning of a

valid spectrum, so no compact Riemannian manifold (M, g)

with S1 as the beginning sequence of its spectrum can exist.

This yields a contradiction to the result of Colin de Verdière,

since a manifold exists for any finite beginning sequence of

its spectrum. ,

Another interesting (but weaker) result following directly

from Assertion 1 can be stated.

Corollary 1 (Impossibility of finite characterization)

No subsequence S of a spectrum Spec(M) of any unknown

compact Riemannian manifold M already determines the

whole spectrum.
Proof. Since no redundancy function h(S) computing just a

single eigenvalue lk can be found (see Assertion 1), it is of

course impossible to find a function h(S) computing several

eigenvalues (or even the whole spectrum). ,

Of course, classes of manifolds exist (like the disks or the

rectangle) where one or two eigenvalues already determine

the size and the shape and therefore the whole spectrum. In

other words, if we know we have a rectangle, we need just

two eigenvalues to find its side lengths. Corollary 1 states

that without prior knowledge of the manifold, a character-

ization is impossible by a finite subsequence of the

spectrum. Therefore, the spectrum cannot be compressed

into a finite subsequence (see property [COMPRESSION])

without losing information. As we will discuss later, the

whole spectrum on the other hand determines the shape of

some manifolds (e.g. balls in any dimension among solids,

cf. Remark 1).

† A substantial amount of geometrical and topological

information is known to be contained in the spectrum (see

Section 2.3), therefore the property [PHYSICALITY] is

fulfilled. Even though we cannot crop a spectrum without

losing information, we will show that it is possible to

extract important information just from the first few

eigenvalues (approx. 500).
2.2. Isospectrality

Unfortunately, the spectrum does not completely determine

the shape of the underlying manifold, even though geometrical

data is contained in the eigenvalues. Manifolds with identical

spectra will be called isospectral manifolds. The question

formulated by L. Bers and first published by Kac in 1966 (see

[40]), asking if the shape of a planar region is determined by

the spectrum of the Laplacian, has been answered negatively.

Originally, the question was stated by Gel’fand in a more

general and theoretical context concerning arbitrary manifolds

(see [32]). After many years of research in 1992, it could be

shown (cf. [34]) that pairs of isospectral but not congruent

planar domains exist. Meanwhile, various pairs of planar (and

also non-planar) non-isometric but isospectral manifolds are

known. Fig. 2 shows two isospectral planar domains found by

Buser et al. [16]. One can show these domains to be isospectral

by using the technique of transplanting the eigenfunctions of

one domain to the other.
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Therefore, it will not be possible to satisfy property

[COMPLETENESS]. Nevertheless, no three pairwise isospec-

tral but non-isometric manifolds have been constructed so far

and all known pairs of isospectral planar domains have been

shown to be non-convex with non-smooth boundaries. The only

examples of pairs of convex domains in Euclidean space, being

isospectral but not congruent, were found in four or higher

dimensional spaces [33]. It is not sure if triples or isospectral

continuous deformations exist in lower dimensions at all. The

constructed examples (i.e. pairs of isospectral domains) were

always somewhat artificial and appear to be exceptional.

Furthermore, some shapes can be characterized completely by

their spectrum (e.g. simple analytic surfaces of revolution

among their type, cf. Zelditch [69] or the n-dimensional disks

among solids, cf. Kac [40] for planar disks and see Remark 1 in

Section 6.1. for higher dimensions). Therefore, there is some

hope that isospectrality of non-isometric manifolds (at least in

lower dimensions up to 3) is a relatively rare phenomenon. For

instance, Osgood et al. [52] showed that isospectral families of

metrics on a given surface are compact in a naturalCN topology.

Furthermore, for the special case of Riemann surfaces (namely

surfaces with constant negative curvature), Buser [15] was able

to derive an upper bound for the number of isospectral but non-

isometric surfaces depending only on the genus. For all of these

reasons and also based on experimental studies, we feel that the

spectra of the Laplace–Beltrami operator have significant

discrimination power, strong enough to be used in contemporary

applications.

In this context, it should be noted that there is evidence that in

the case of a fixed graph, the unknown weight function can be

reconstructed by knowledge of the discrete spectrum of the graph.

This graph spectrum can be obtained by the discrete analogue of

the Laplacian, the Laplace–Kirchhoff operator (cf. [36]). The

weight reconstruction is still an area of active research. For the

‘reverse’ case of a given weight function (satisfying special

conditions), the unknown graph structure can be reconstructed by

knowledge of the spectrum of the Laplace–Kirchhoff operator

(see Halbeisen and Hungerbühler [36]).
2.3. Geometric information

A substantial amount of geometric and topological

information is known to be contained in the spectrum. These

results endorse property [PHYSICALITY]. Beyond that, they

even contribute towards the desired property [COMPLETE-

NESS] considering that all geometrical and topological

properties determined by the spectrum have to be identical

for isospectral objects. In this section we will present an

overview on known results. Finally, we state our Theorem 4

that ensures the rapid convergence of the ‘heat trace’ and thus

the possibility to actually compute geometric and topological

information with only the first few eigenvalues of an object.

In response to the question ‘can one hear the shape of a

drum?’, it is possible to ‘hear’ the following information:

(1) It has been shown that if two compact Riemannian

manifolds M and �M are isospectral, then dimMZdim �M
and (Riemannian) volumeðMÞZvolumeð �MÞ [8, p. 215].

Hence, the spectrum determines the dimension and the

volume of a Riemannian manifold. McKean and Singer

[44] showed the equality of the respective curvature

integrals for the scalar curvature K (i.e. the Gauss

curvature in case of a surface) for isospectral manifoldsÐ
M kZ

Ð
�M
�K

� �
:

(2) In the case of a compact d-dimensional manifold M with

compact (dK1)-dimensional boundary B in addition to the

results in (1), the (Riemannian) volume of the boundary B

can be ‘heard’ [44]. However, in order to obtain the

curvature integral of M and the integrated mean curvatureÐ
B J the spectrum of the double of M is generally needed.

(3) In the cases of a closed surface (dimZ2) and of a planar

domain with a smooth boundary, McKean and Singer [44]

deduced the possibility to ‘hear’ the Euler characteristic

from the spectrum. Thus, Kac’s conjecture [40] of hearing

the number of holes in the case of a planar region M with

smooth boundary B can be obtained. For surfaces with

smooth boundary, the Euler characteristic and the geodesic

curvature integral of the boundary curve can be obtained

from spectral data as well, if one additionally employs the

spectrum of the surface double.

Remark. On a surface (dim(M)Z2), the Riemannian volume

of M is the surface area and the Riemannian volume of the

boundary is its length.

We will now give a short overview on the background

needed to understand the connection between the eigenvalues

and the geometric data mentioned above [in (1)–(3)]. More

details can be found in Berger [7], and in [22]. Everything

started with the following result by Weyl [62] for the two-

dimensional [63] for the three-dimensional case for a planar

domain with boundary (cf. also [7] or [17]).

Theorem 1 (Weyl—Asymptotic growth of eigenvalues)

If D is a bounded region of Rd with piecewise smooth boundary

B and if 0!l1%l2/ is the spectrum and N(l) the number of

eigenvalues %l, counted with multiplicity, then

NðlÞw
udvolðDÞld=2

ð2pÞd
(7)

as l/CN, where vol(D) is the volume of D and

udd
pd=2

G d
2
C1

� � (8)

is the volume of the unit disk in R
d. In particular,

lnw4p2 n

udvolðDÞ

� �2=d

as n[N (9)

especially,

lnw
4p

volðDÞ
n for dZ2; and

lnw
6p2

volðDÞ

� �2=3

n2=3 for dZ3:

(10)
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Minakshisundaram and Pleijel [46] extended this result and

showed more generally that for a closed Riemannian manifold,

N(l) has also an asymptotic approximation whose first term is

determined by the volume of the manifold and its dimension.

Not much later the heat kernel, the fundamental solution of the

heat equation, was constructed by Minakshisundaram [45] and

the asymptotic expansion of the heat trace was inspected. We

will give a short explanation of these concepts, as they are the

basis of our computations.

Let M be a Riemannian manifold. The heat equation is

given by

vu

vt
CD2ðuÞZ0; u : ½0;NÞ!M/R; (11)

with D2 being the Laplace–Beltrami operator with respect to

the second variable (i.e. the space variable x). Here, u(t, x) is

the temperature at the point x2M at time t. Given an initial

temperature distribution u(0, x)Zf(x) and a Dirichlet boundary

condition (u(t, x)h0 for x on the boundary of M) then a

fundamental solution of the heat equation on M (also called

heat kernel) is a function K:(0,N)!M!M/M, satisfying:

(1) K(t, x, y) is C1 in t and C2 in x and y.

(2) K solves the heat equation: ðvK=vtÞCD2ðKÞZ0.

(3) K fulfills the boundary condition: K(t, x, y)Z0 if x is on the

boundary of M, and

(4) limt/0C
Ð
MKðt;x;yÞf ðyÞdVðyÞZf ðxÞ uniformly for every

function f that is continuous on M and vanishes on the

boundary of M.

A solution of the heat equation (11) can be obtained with the

heat kernel by adding the contribution of each point to the

initial data:

uðt;xÞZ

ð
M

Kðt;x;yÞf ðyÞdVðyÞ: (12)

For Theorem 2, refer to Chavel [17, p. 139 and 169].

Theorem 2 (Sturm–Liouville decomposition)

Let (M, g) be an n-dimensional compact Riemannian manifold,

with eigenvalues (counted with multiplicities) ln (nR1) and

associated orthonormal real eigenfunctions xn. A unique heat

kernel K(t, x, y) exists on (M, g). The heat kernel can be

expressed as

Kðt;x;yÞZ
XN
nZ1

eKlntxnðxÞxnðyÞ (13)

with absolute and uniform convergence for each tO0. The heat

trace of the Dirichlet Laplacian D on a Riemannian manifold

M is defined by

ZðtÞd

ð
M

Kðt;x;xÞdVðxÞ (14)
and can thus be expressed by

ZðtÞZ
XN
nZ1

eKlnt

ð
M

ðxiðxÞÞ
2dVðxÞZ

XN
nZ1

eKlnt (15)

Z(t) is sometimes called the partition function of (M, g).

Theorem 3 (Asymptotic heat trace expansion)

The heat trace has the following asymptotic expansion when

(t/0C), (cf. [45,54] for an overview):

ZðtÞZð4ptÞ
KdimðMÞ

2

Xn
iZ0

cit
i
2 Coðt

nC1
2 Þ

 !
(16)

With one of the Landau symbols, O:

f ðtÞZ0ðgðtÞÞ :5dk2R :
f ðtÞ

gðtÞ

����
����!kwhen ðt/0Þ: (17)

c0 of the asymptotic expansion Z(t) is the volume of the

manifold, but even more geometric information can be

extracted as shown by McKean and Singer [44] who obtained

the first three coefficients in the case of smooth compact

d-dimensional Riemannian manifolds M with or without

compact (dK1)-dimensional boundary B

c0 ZvolðMÞ; c1 ZK

ffiffiffiffi
p

p

2
areaðBÞ; and

c2 Z
1

3

ð
M

KK
1

6

ð
B

J

(18)

with the scalar curvature K and the mean curvature J at

the boundary. Therefore, for a planar region with a

smooth boundary B the number of holes h!N can be

obtained

c2 Z
2p

3
ð1KhÞ (19)

and for closed two-dimensional manifolds the Euler

characteristic E:

c2 Z
2p

3
E (20)

These results confirm the earlier results by Weyl and

Kac for planar regions, namely that the area and the length

of the boundary curve can be extracted (see above).

Further coefficients of the asymptotic expansion above have

been calculated (see Protter [54]).

Weyl’s law (Eq. (9)) can be described as a result of Theorem

3 (using Karamata’s Tauberian theorem and writing

X
n

eKlntZ

ðN
0

eKlnt dNðlÞ cf:

[28, p. 446, theo. 4]). It is therefore valid for Riemannian

manifolds in general. Using Weyl’s law we will now discuss

how fast the series defining Z(t0) in Eq. (15) converges for a

fixed t0. We derive the subsequent result (that we could not find

in the literature).
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Theorem 4 (Rapid convergence of heat trace series)

The remainder term Rn0
ðtÞZZðtÞKZn0

ðtÞ of the n0th partial sum

Zn0
ðtÞd

Xn0

nZ1

eKlnt (21)

describing the heat trace Z(t) vanishes very fast:

Rn0
ðtÞ!

n
1Kk1t
0

k1tK1
Z:R1ðtÞ when tO

1

k1

(22)

Here k1 is a constant depending on the geometry of the domain

and on n0. In the special case of a two-dimensional manifold, the

remainder is bounded from above by

Rn0
ðtÞ!

eKðn0C1Þk0t

1KeKk0t
Z:R0ðtÞ (23)

with a constant k0 depending on the geometry of the domain and

on n0.

Proof. We can write Weyl’s law (Eq. (9)) as

lnw4p2 n

udvolðDÞ

� �2=d

Zan2=d as n[N (24)

with the substitution ad4p2(udvol(D))K2/d (only depending on

the dimension d of M). This asymptotic relationship means that

lnwan2=d5 lim
n/N

ln

anð2=dÞ
Z1

5c3O0dn0 :
ln

anð2=dÞ
K1

����
����%3 ðcnRn0Þ

5
��lnKanð2=dÞ

��%3 anð2=dÞ ðcnRn0Þ

(25)

If ln%an2/d it follows that

lnRð1K3Þan2=d (26)

In the other case (lnRan(2/d)), Eq. (26) holds trivially when

choosing 0!3!1. Therefore, we can write

lnOk0n
2=d (27)

and because exponential decay is much faster than polynomial we

get

lnOk1 lnn (28)

in general (for all ln with nOn0 and n0 depending on the constant).

We can now find an upper bound for the remainder term

Rn0
ðtÞ for a fixed t using Eq. (28):

Rn0
ðtÞZ

XN
nZn0C1

eKtln!
XN

nZn0C1

eKk1t ln n

Z
XN

nZn0C1

nKk1t!

ðN
n0

xKk1tdxZ
1

k1tK1
n

1Kk1t
0

if k1tO1:

(29)

This term vanishes very rapidly. The condition k1tO1 can be

fulfilled for small t by choosing n0 large enough to get a

sufficiently large k1.
Of course the real convergence of Z(t) is even faster, since

the term above is just a rough upper bound. A tighter upper

bound to the remainder term can be given in the case of a

surface (dZ2) with Eq. (27), because the series describing

Z(t0) converges as rapidly as the geometric series:

Rn0
ðtÞZ

XN
nZn0C1

eKtln!
XN

nZn0C1

eKk0tnZ
XN

nZn0C1

ðeKk0tÞn

Z
eKðn0C1Þk0t

1KeKk0t
(30)

,

Our observations above regarding the rapid convergence of

the series describing Z(t0) imply that there is hope to obtain a

decent approximation of the first coefficients ci in Eq. (16)

using a moderate number of eigenvalues that can be

determined by feasible numerical computations.
3. Numerical computation

In this section we will explain the numerical computation of

the eigenvalues of surfaces and solids with the help of finite

elements. Readers familiar with the finite element method may

simply skip this section.
3.1. Variational problem

For the numerical computation (next section), the first step is to

translate the Laplacian eigenvalue problem into a variational

problem. To accomplish this, we use Greens formulað ð
4Df dsZK

ð ð
Vðf ;4Þds (31)

with 4h0 on the boundary [11, p. 227] and the Nabla operator

Vðf ;4ÞZ
X

gijvif vj4 (32)

We multiply the Helmholtz equation with test functions

42C2 (4h0 on the boundary). Integrating over the area and

using Greens formula we obtainð ð
4Df dsZKl

ð ð
4f ds

5

ð ðX
gijvif vj4dsZl

ð ð
4f ds

(33)

with dsZW du dv being the surface element in the surface case.

Every function f2C2 on the open domain and continuous on the

boundary solving the variational equation for all test functions 4

is a solution to the Laplace eigenvalue problem [13, p. 35].
3.2. Discretization

For the numerical computation of the eigenvalues and

eigenfunctions, a discretization of the problem is necessary.

The solution of the variational problem in the surface case is



Fig. 3. Surface sensitive meshing.
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approximated using the Galerkin technique as follows (see, e.g.

Strang [58]):

† Firstly we choose n linearly independent form functions:

F1ððxÞ;.;FnððxÞ defined on the parameter space.

† Secondly we use these functions as a basis of a vector space

and allow the following linear combination as approxi-

mation of the solution:

f ððxÞzFððxÞ :ZU1F1ððxÞC/CUnFnððxÞ:

† Finally we calculate the n unknown coefficients Ui2R by

substituting f in the variational equation and by choosing n

different test functions 4i to get n equations. In order to keep

the problem symmetric we choose the test functions to be

the n-form functions.

As form functions for the Finite Element Method, we used

linear, quadratic and cubic polynomials defined on triangular

elements in the parameter space of the surface or on tetrahedral

elements in case of a solid. The higher degree functions lead to

a better approximation and consequently to better results.

Employing Eq. (33) then with the two symmetric matrices

AZðalmÞ :Z

ð ð X
j;k

ðvjFlÞðvkFmÞg
jkÞds

 ! !

BZðblmÞ :Z

ð ð
FlFmds

� � (34)

the variational equation can be written as the general

eigenvalue problem:

AUZlBU (35)

Here U is the vector (U1,.,Un) and A, B are sparse positive

(semi-) definite symmetric matrices since all eigenvalues are

greater or equal to zero. The solution vectors U (eigenfunc-

tions) with corresponding eigenvalues l can then be calculated.

It should be noted that the integrals mentioned above are

computed on the surface (not on vertices of a given mesh) and

therefore independent of the given mesh (as long as the mesh

fulfills some refinement and condition standards). Beyond that,

this method is completely independent of the given

parametrization.
Fig. 4. Triangle refined with edge trisection.
4. Implementation

In the present state we can use the following object

representations as input: A triangulation of a 2d-parameter

space together with any given parametrized surface as input

(our sample computations include NURBS, faceted surfaces,

etc.). Furthermore, polyhedra or tetrahedrized 3d-parameter

spaces can be used as input. As we will see later, it is possible

to glue parameter spaces to each other or to themselves in order

to construct closed or more complex objects.

Different techniques are used for mesh generation. The

triangulation of the parameter space employs a Delaunay
triangulation technique, resulting in triangles whose smallest

angles are maximized [51]. Furthermore, a surface sensitive

triangulation technique based on Chen and Bishop [18] has

been implemented for the creation of high quality meshes on

surfaces. This method uses surface curvature and circumel-

lipses (instead of circumcircles) in the parameter space to

control the surface mesh quality and density (see Fig. 3).

In order to be independent of the given resolution, it is

possible to further refine a triangulation or tetrahedrization.

Since we are interested in many eigenvalues and eigenfunc-

tions at once and since we do not know beforehand where a

dense mesh is needed for a specific eigenfunction, it is wise to

refine the mesh globally. It is also possible to refine locally.

This makes sense, for example, in areas with concavities or

with high surface curvature, since most eigenfunctions will

need fine meshes in these areas. Furthermore, for local

refinement an a posteriori error estimate can be used to

improve the calculation of a specific eigenfunction. For

example, the error estimate of Zienkiewicz-Zhu (see Ains-

worth and Oden [2]) detects regions where the approximation

of an eigenfunction yields errors. These regions can then be

refined locally to improve the results in a second computation.

Often the global refinement of a given triangulation is done

by dividing every edge into halves, thus creating four smaller

triangles within each triangle, each of them similar to their

parent. Further refinement can be achieved by repeating this

step. The problem with this method is that the total number of

triangles t raises exponentially with the steps n of refinement

(tZ4ntold) (with told triangles in the initial mesh). After only a

few steps the mesh is too large for efficient FEM computations.

It is therefore helpful to have a refinement method that provides

more densely spaced refinement steps. In this way the maximal

possible number of triangles can be approached without

exceeding it to early.

In order to be able to generate more closely spaced levels of

global refinement, the simple approach from above can be

modified slightly. Every edge can be divided into n equidistant

segments (see Fig. 4). This way, it is possible to generate n2

similar smaller triangles in just a single step. Since only this
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single refinement step will be used, the total number of finer

triangles t yields a polynomial growth (tZn2told).

Even though this method seems to be very simple, it is quite

tricky to implement. The creation of a huge amount of triangles

in a single step makes bookkeeping very complicated. Many

new neighborhood relations have to be generated and the

uniqueness of every new vertex has to be assured. This turns

out to be challenging especially with vertices and neighbor-

hood relations at the edges of each parent triangle. The new

neighbor-triangles might not yet exist (the neighbor parent

might not have been visited yet). In order to avoid revisiting

triangles later, the triangle indices of the future neighbors have

to be pre-calculated. Nevertheless, all of this can be done

within a single run through the triangle list, resulting in a very

time efficient and flexible routine for global refinement.

To be able to glue different patches to each other or even

glue a patch to itself we developed a special data structure

called ‘structural atlas’. The structural atlas consists of one or

several polygonal triangulated parameter spaces, associated

parametrizations (functions mapping a point of the parameter

space into R
3) and a list of edge pairs glued to each other. The

glued edges must lie on the boundaries of the parameter spaces.

With the help of this data structure, it is possible to use a broad

variety of parametrizations to construct surfaces, since the

boundary of the parameter space does not necessarily need to

be the boundary of the surface patch anymore. The atlas can

easily be employed to construct a torus, a sphere and many

other closed or non-closed surfaces. It is not necessary that

pairs of glued edges are mapped to identical positions,

therefore even objects like flat tori that cannot be embedded

in R
3 can be constructed. This is a great advantage since

models with correct topology (e.g. boundary representations

where the patches are glued correctly to each other) but with

gaps or holes in the geometry can be given as input without any

pre-processing.

Fig. 5 shows the construction of a cylinder with spherical

caps. The cylinder with spherical caps consists of three

parameter spaces glued to each other with corresponding

parametrizations mapping the triangles to hemispheres and the

rectangle to the cylinder shell. The reason why it is possible to
Fig. 5. Glued parameter spaces of a cylinder with spherical caps.
glue different patches to each other is simply that different local

parametrizations do not change the values of the integrals used

to compute the two matrices A and B, defined invariantly only

employing the Riemannian metric. Therefore, our method also

works with faceted surfaces (such as the boundary of 3d-

polyhedra).

Finally, before computing the surface integrals mentioned

earlier, the Cuthill algorithm [23] is applied to the interior

vertices of the triangulation or tetrahedrization to keep the

usage of memory small. By renumbering the vertices in a way

that adjacent vertices get numbers close to each other, the

bandwidth of the two resulting sparse symmetric matrices can

be reduced. These band matrices can be stored very efficiently.

Because of the boundary condition (fh0 on the boundary), the

vertices on the boundary do not need to be indexed. After

calculating the integrals (being the entries of the two matrices),

a NAG (Numerical Algorithms Group) FORTRAN library [47]

is used to solve the general eigenvalue problem. In addition to

the eigenvalues, it is possible to compute the eigenfunction in

the same manner. If only a small number of eigenvalues is

needed, a Lanczos algorithm [35] can be employed to solve

large symmetric eigenvalue problems even faster than this is

possible with the direct method used in the NAG library.
4.1. Convergence and accuracy

It is well known that the convergence rate of the FEM

method with degree p behaves asymptotically (with an error of

order O(hpC1)) as the element size h tends to zero and if the

exact solution contains no singularities (see, e.g. Zienkiewicz

and Taylor [70]). Given two approximate solutions, u1 obtained

with mesh size h and u2 with mesh size h/2, then a close

approximation of the exact solution u can be calculated from
OðhpC1Þ

OðhpC1=2pC1Þ

� �
z

u1Ku

u2Ku
z2pC1 (36)
in most practical cases [70]. This is possible because the

described convergence rate is generally reached very fast. It

should be noted that many discrete Laplace–Beltrami operators

defined on meshes and used for computer graphics applications

are not convergent in general, some of them are not even an

approximation of the continuous case (cf. Xu [68]). Further-

more, most of these discrete operators are only discretizations

of the Laplacian in the case of manifolds without boundary.

In addition to the known convergence rate, further

possibilities exist to assess our results. Our FEM computation

yields very accurate results as can be verified when comparing

the approximated results with the exact ones known from

theory in some cases (rectangle, circle, sphere, cube, ball,

cylinder, etc.). Additionally, the fact that we are able to extract

the correct geometrical data (volume, boundary length, Euler

characteristic) from the heat trace expansion indicates that the

calculated eigenvalues are very precise.



Fig. 6. Subdomains of polygon.
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4.2. Planar polygonal domains

For planar polygonal domains, there exists a method for

calculating the eigenvalues of the Laplacian that uses the

knowledge of the correct solution at the singularities (the

vertex points of the polygon) employing radial basis functions

in polar coordinates and the integration of Fourier–Bessel

functions on subdomains. This method was proposed by

Descloux and Tolley [24] and improved by Driscoll [26] and

yields very exact results (proven in [10]). To be able to use

their method for any planar polygonal domain, we had to

extend it to handle inner domains. We also developed and

implemented a fully automatic algorithm to subdivide any

polygon into subdomains (see Fig. 6 for an example). The star

shaped subdomains around each center need to obey special

conditions dictated by Descloux and Tolleys method. For

example, the size of each subdomain is bounded by the

distance of its center to the closest neighbor center. With our

software, it is possible to find a close approximation to an

eigenvalue inside a specified interval. It is therefore efficiently

possible to calculate a few eigenvalues very exactly. For larger

quantities of eigenvalues (e.g. 100 or even 1000), this method

is not suitable, though it might be possible to combine it with

our FEM computation to improve our pre-calculated results.

Note that Descloux and Tolley [24] were already inspired by

the method of particular solutions that had been proposed by

Fox et al. [29]. This method has been revived by Betcke and

Trefethen [10] quite recently. They were able to overcome its

numerical limitations by forcing the solutions to be largely

non-zero in the interior of the planar domain. With their refined

method they computed highly accurate eigenvalues and

verified their correctness.
Fig. 7. Spectrum of the sphere with lower bounds.
5. Extraction of geometric data

5.1. Error computation and extrapolation

The numerical extraction of geometric data from the heat

trace (cf. Eqs. (15) and (16)) appears to be completely new. The

asymptotic expansion (16) as (t/0C) can be understood as

XðtÞ :Zð4ptÞdimðMÞ=2ZðtÞZ
Xn
iZ0

cit
i=2COðtðnC1Þ=2Þ (37)
With the substitution xd
ffiffi
t

p
and dddim(M) we get

XðxÞZð4pÞd=2
XN
iZ1

xd eKlix
2

Z
Xn
iZ0

cix
iCOðxnC1Þ (38)

and for (x/0C) the first coefficient c0 can be calculated:

lim
x/0

XðxÞZ lim
x/0

Xn
iZ0

cix
iCOðxnC1Þ

 !
Zc0 (39)

The coefficients c1 and c2 can be calculated similarly using

the limit values of the derivatives

c1 Z lim
x/0

X 0ðxÞZ lim
x/0

ð4pÞd=2
XN
iZ1

xdK1ðdK2lix
2ÞeKlix

2

c2 Z
1

2
lim
x/0

X 00ðxÞ

(40)

The only handicap is that instead of the whole spectrum

only the first n eigenvalues li are known. Therefore, the infinite

sum in X(x) can only be evaluated partially for the first n

summands. However, as we showed in Theorem 4, we receive

good results for sufficiently large x because the convergence

rate is fast enough for x large enough. Of course, the function

XnðxÞdð4pÞd=2
Xn
iZ1

xd eKlix
2

(41)

and its derivatives yield a large error if x gets too small, since

the infinite sum is replaced by a finite summation. Therefore,

the values ci have to be computed by extrapolation. Actually,

the error stays quite small for larger x and then increases

rapidly if x drops below a certain value. In Figs. 8 and 9 (that

we will discuss in more detail later), the function X1000(x) is

plotted with the first 1000 known eigenvalues of the sphere. It

can be seen that X(x) breaks away when x gets smaller than 0.1.

The interesting question, which values of X(x) are reliable and

which are not, can now be answered with the help of Theorem 4

via computation of the constants k0(1000) and k1(1000).

We can see in Fig. 7, where the first 5000 eigenvalues of the

sphere are plotted (step function S(n)), that we can get a safe

approximation of k1Z143 since the linear growth of the



Fig. 9. X(x) for the sphere with error using k0.
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eigenvalues larger than l1000 will stay above the logarithmic

function K1(n)d143 ln n (cf. Theorem 4). Since we have a

two-dimensional problem (sphere surface) and therefore a

linear growth of the eigenvalues, a tighter lower bound for the

eigenvalues can be given by the line K0(n)dk0n with k0Z
0.96969 (again see Fig. 7). Of course, in general, one cannot be

sure that all higher eigenvalues will stay above the bounds

lnOK0,1(n). This theoretical objection can be diminished since

the eigenvalues usually start to obey Weyl’s law very early and

since many more eigenvalues are computed than needed for Xn,

which can be used to verify and if necessary to correct the

constant. To be on the safe side, one can simply apply the

weaker logarithmic bound K1 and use the constant k1 for the

error estimation.

Using the constants k0 and k1, the upper bound of the error

(remainder term R0(x) and R1(x), respectively) can be

computed via Theorem 4. In Figs. 8 and 9 the function

X1000(x) is plotted together with the upper bounds of its

remainder term. In the first case we computed the general

bound R1 using k1 that holds in any dimension. As shown in

Assertion 1, this bound can only be applied for xO
ffiffiffiffiffiffiffiffiffiffiffiffi
ð1=k1Þ

p
z

0:08363 which is still sufficiently small. It can be seen that the

values of X(x) for xO0.1 are very good. Using the constant k0

(that can be applied since the sphere is a two-dimensional

manifold) yields a much better upper bound R0 of the error (see

Fig. 9). We observe that values for xO0.08 are already very

good. These left bounds (x-values where the function R(x)

shrinks below a given error e) can be computed numerically

and depend on the number of eigenvalues used.

In Fig. 10 we see these left bounds (x-values) plotted

against the used number of eigenvalues n (again in the case

of the sphere) for a given eZ0.0000001. This graph shows,

how far we can approach zero given a number of

eigenvalues (with an error certain to stay below e). As

can be seen, the graph shrinks rapidly at the beginning, it

then slows down at around 500 eigenvalues and decreases

only slightly above 1000 eigenvalues. In other words, it

does not help much to use more than 1000 eigenvalues for

the computation, since the left bound barely keeps moving.

The inverse plot n(x) is also interesting, because it shows
Fig. 8. X(x) for the sphere with error using k1.
how many eigenvalues are actually needed if X(x) shall be

computed with an error below e for a given x.

Since we cannot approach zero any closer than the left

bound x(n), the computation of the limits of X and its

derivatives for x/0 in Eqs. (39) and (40) have to be done

via extrapolation. For this purpose, we constructed an

interpolating rational function (using the NAG library) and

evaluated the interpolant at xZ0. This automatic process yields

very good results when computing the first coefficient c0.

Because the derivatives of the interpolant are not as precise, we

interpolated the derivatives of X(x) successively instead. Since

no error bounds have been constructed for the derivatives so

far, some user interaction was necessary for the appropriate

placement of the sampling points. We are currently working on

improved methods using different extrapolation functions

employing also the known derivatives at some sample points.

We think that with more suitable extrapolation or fitting

routines and a refined error analysis for the derivative values

(X0 and X00) further automation and a higher accuracy of the

computed geometric data will be possible.
Fig. 10. Left bounds x(n) with eZ0.0000001.



Fig. 11. Extrapolation of X500(x) for the ellipse.

Fig. 12. Extrapolation of X 00
500ðxÞ for the annulus.
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5.2. Examples

5.2.1. Ellipse

In the case of the ellipse with radii (r1Z1.0, r2Z1.5), we

used an affine transformation of the disk for the numerical

eigenvalue computation (cf. Section 6.1 and Fig. 13 for a

parametrization), keeping the mesh well conditioned. In Fig. 11

the function X500(x) is plotted together with its extrapolating

rational function E(x). The computed value AZE(0)Zc0Z
4.71075 describes the area of the ellipse, a number quite close

to the real area 1.5pz4.712389. A different polynomial

extrapolation function

ApdEpðxÞZ4:71121K7:04364xC0:19791x2 (42)

looks exactly the same, but yields an even better approximation

of the area

Epð0ÞZc0z4:71121: (43)

The approximated boundary length

Lz
K2ffiffiffiffi
p

p c1z
K2ffiffiffiffi
p

p ðK7:02176Þz7:9232 (44)

which is close to the real length 7.93272 (computed by

integration of the boundary curve) could be obtained by

extrapolating the first derivative X0(x). Furthermore, the

number of holes h, a topological invariant and determining

the Euler characteristic

hZ
K3c2

2p
C1z

K3!2:0862

2p
C1z0:00391z0 (45)

could be obtained correctly (of course, the result has to be an

integer value). All the results with relative error can be found in

Table 1.
Table 1

Geometric data of ellipse

Real Extracted Error (%)

A 4.712389 4.71075 0.035

Ap 4.712389 4.71121 0.025

L 7.93272 7.9232 0.12

h 0 0.00391 –
5.2.2. Annulus

Using the Laplace–Beltrami operator on a parametrization

of the annulus with outer radius 1 and inner radius 1/3 for the

computation of the spectrum, we extracted its area and

boundary length exactly at least up to the third decimal place

and obtained the number of holes hZ1 (since c2 is almost zero,

as can be seen in Fig. 12).
5.2.3. Sphere

The sphere with radius 1 has a surface area of 4pz12.5664.

We extracted the area

AZ12:557 (46)

from the computed eigenvalues employing the Laplace–

Beltrami operator on the surface. The boundary length LZ0

is already known from the fact that the first eigenvalue is also

zero (since the sphere is a closed surface, cf. Section 2.1). The

extracted Euler characteristic

EZ1:902z2 (47)

is a close approximation to the real characteristic. The results

can be found in Table 2.
Table 2

Geometric data of sphere

Real Extracted Error (%)

A 12.5664 12.557 0.075

E 2 1.902 –



Table 3

Geometric data of ellipsoidal hemisphere

Real Extracted Error (%)

A 8.459 8.459 0

L 2pz6.283 6.25761 0.404
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5.2.4. Ellipsoidal hemisphere
The ellipsoidal hemisphere with radii (r1Zr2Z1, r3Z1.5)

serves as an example for a bounded, curved surface. The

extracted surface area and boundary length together with the

relative error can be found in Table 3.
5.2.5. Ball

For the solid ball we deformed a cube using the

parametrization as described in Section 6.1. Even the

extraction of the volume V and the boundary surface area A

for this smoothly bounded 3d solid was possible. Table 4

presents the exact and the extracted values together with the

relative error. We notice a larger error than in the 2d surface

examples presented above. This is due to the fact that the

additional complexity of the new dimension results in denser

and larger matrices and therefore allows only coarser meshes.

As we will show later, these coarse meshes are good enough for

the first lowest eigenvalues to be quite accurate. The larger ln
with n around 500 however show errors up to 11%. We also

obtained similar results for the unity cube (see [55]).
5.2.6. Remarks

Furthermore, we obtained very good results for the torus

extracting its area and Euler characteristic (see [55]), employ-

ing the ‘Atlas’ data structure for the construction and

computation. In all examples above we used only the first

500 eigenvalues. Of course all of the shown values can be

improved if higher sufficiently correct eigenvalues are used

(using a higher refinement of the mesh or more accurate and

faster computation methods available for special cases, e.g.

planar shapes).
Table 4

Geometric data of the ball

Real Extracted Error (%)

V 4/3pr3Z4.18879 c0Z4.058 3.12

A 4pr2Z12.56637 ðK2=
ffiffiffiffi
p

p
Þc1Z12:049 4.12
6. Applications

Before we look at some application examples, we want to

give a brief overview on the necessary steps described so far:

(1) Pre-process. Some objects might need to be pre-processed

for the computation of the eigenvalues. Pre-processing

includes, e.g. conversion into a dataformat supported by

the FEM engine (like triangular meshes, surface para-

metrizations such as spline patches or composed patches as

a ‘structural atlas’, tetrahedrizations of solids, parame-

trized solids). If the given object is not a manifold, or

consists of several separated components, it first has to be

repaired or the desired component has to be selected. If the

eigenvalue computation of a scene containing several

components is carried out at once the resulting Shape-

DNA is the union of the eigenvalues of the single

components ordered by size. In such a case, shape

matching is still possible (if, e.g. the whole scene needs

to be compared to a scene with similar components or if

single components shall be found) whereas the extraction

of geometric data cannot be accomplished in this way.

(2) Eigenvalue computation. The computation of the eigen-

values is the most time consuming step. It can be done with

the FEM method. In the case of a solid tetrahedrization or

planar triangulation, a commercial software package can

be employed for this task. For the parametrized objects

(using the Laplace–Beltrami operator, Eq. (4)) and for 3d-

meshes such a software package needs to be expanded, or

proprietary FEM software solving the Helmholtz equation

(6) for these cases needs to be developed. To get accurate

results, remeshing or mesh refinement of the object might

be necessary (see also Section 4). In some cases (where the

initial mesh is too fine), mesh simplification can be applied

to speed up the computation. The FE-method can be

divided into two parts. The first part creates a discrete

generalized eigenvalue problem AxZlBx with two large

and sparse symmetric positive (semi-)definite matrices A

and B (Eq. (34)). The second part solves this problem

(employing standard libraries as, e.g. ARPACK or NAG).

The computation time of the FE-method depends on the

degrees of freedom (dimension of the matrices). The

dimension depends on the number of elements (triangles or

tetrahedra), on the connectivity of the mesh and on the

degree used for the FEM computation. Usually, we use

cubic elements. If the given surface or solid has a

boundary, generally the Dirichlet boundary condition

(fixed membrane) is applied. If objects with small holes

or missing triangles are to be compared the Neumann

boundary condition can be used instead, because the

unwanted holes appear not to change the Neumann

spectrum not as much as in the Dirichlet case.

(3) Post-process. When the eigenvalues of the surface or solid

have been computed, they can be post-processed depend-

ing on the desired application. As will be described in the

next sections, scaling can be undone using different

approaches. Furthermore, geometric data can be extracted,



Fig. 13. Parameter space of the disk.
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or the Shape-DNAs (vectors of eigenvalues) can be

compared for shape identification or matching.

With the help of this Shape-DNA, several applications can

be realized. As mentioned before, one can use the Shape-DNA

to identify objects for the purpose of copyright protection, even

when they are given in different representations. Similar

objects having similar Shape-DNA can be detected fast by

comparing only the Shape-DNA, enabling the use of our

technique for database retrieval and shape matching. Further-

more, the Shape-DNA can be used for quality assessment, e.g.

when converting or producing objects to prove that the shape of

the converted object has not been modified. In order to apply

our technique in these areas, three requirements need to be

fulfilled:

† Firstly, the Shape-DNA needs to be very accurate, ensuring

that the same Shape-DNA is calculated for an object when

using different meshes or even when it is calculated

analytically. This requirement can be fulfilled by using

sufficiently dense meshes, since the convergence of the

FEM is known.

† Secondly, similar but different objects should have different

Shape-DNA, making it possible to discriminate between

these objects. This property is only violated by the

artificially constructed isospectral but not isometric objects

(identical twins) described earlier. Anyhow, we will present

evidence in Section 6.3.4 that for some isospectral 3d-

solids, the Shape-DNA of the boundary surface can be used

as a discrimination criterion.

† Thirdly, similar objects need to have similar Shape-DNA in

order to detect the similarity. This requirement is

completely fulfilled by the spectra. We will show in Section

6.3.6 that this property allows the detection of small

deformation and leads to a clustering of similar objects

when applied for shape matching.

In order to discriminate and compare similar objects via

their Shape-DNA, a distance measure for Shape-DNA will be

constructed. Before we look at the accuracy of the compu-

tation, we want to give Definition 3.

Definition 3 (Shape-DNA)

Let M be a Riemannian manifold with a metric g and let

specðM;gÞZfl0%l1%l2%/g (48)

be the function computing the spectrum of (M, g) for a given

boundary condition (we use the zero Dirichlet condition if not

noted otherwise). spec :M/R
N
R0 maps a Riemannian mani-

fold ðM;gÞ2M to the positive infinite dimensional space. The

cropped spectrum containing only the first n eigenvalues

cspecnðM;gÞZ fl0%l1%l2%/%lng2R
n
R0 (49)

is called Shape-DNA of (M, g) and can be seen as a point in the

n-dimensional positive Euclidean space R
n
R0.

We compute these cropped spectra (Shape-DNA) contain-

ing a finite number n of eigenvalues (50–100, or up to 500 for
the extraction of data), since the numerical computation of the

whole spectrum is generally not possible.
6.1. Accuracy

At first we want to corroborate the requirement ‘accuracy’

by looking at a few example calculations where the exact

eigenvalues are known. If not noted otherwise, the computation

was done on a standard PC (AthlonXP running at 1667 MHz).

The eigenvalues of the unit disk, for example, are the squares

of the roots of the Bessel functions Jn [20, p. 261]. By

approximating the area of the disk with linearly bounded

triangles, one always gets a discretization error at the boundary.

Therefore, the resulting eigenvalues are not very accurate

compared to the superior technique used below. In this

computation (with cubic elements and 4021 degrees of

freedom), the first eigenvalue already shows an error of

approx. 0.067%. Higher eigenvalues are even more erroneous.

These results can be improved by exploiting the fact that the

Laplace–Beltrami operator (due to its invariance properties)

yields the same eigenvalues even if a different parametrization

of the same surface is applied. Of course, the Laplace–Beltrami

operator can be applied to parametrizations of planar objects as

well as for surfaces in 3d. In this example, we choose a special

parametrization f (not the identity as above) defined on a

polygonal parameter space glued to itself at the appropriate

boundary edges (as can be seen in Fig. 13). This parametriza-

tion f maps the triangular parameter space onto the disk

f ðu;vÞZrv

cos
pu

v

sin
pu

v

0

0
BBBBB@

1
CCCCCA with 0!v%1; juj%v (50)

additionally defining f(0, 0)d(0, 0, 0).

This method leads to a computation of the smoothly

bounded disk without any discretization error at the boundary.

Another advantage of the parametrization f (compared to polar

coordinates, where a whole edge of the parameter space

boundary collapses if rZ0) is that we have well-behaved

triangles at the center that do not degenerate when using a

higher resolution (refinement). Therefore, with only 3781

degrees of freedom the first eigenvalue is exact up to the eighth

decimal place and even l99 is approximated with a relative

error of only 0.027%.



Table 5

Eigenvalues of the cylinder with spherical caps

EV Real FEM (18,254) FEM (974)

Time – 58 sC5 s 3 sC0 s

l1 0 0 0

l2 0.5974034 0.5974034 0.5974034

l3, l4 1.3450307 1.3450624 1.3456242

l5 2.1930427 2.1930427 2.1930430

l6, l7 2.5588079 2.5589283 2.5610538

l8 4.4586760 4.4586760 4.4586826

l9 4.5416743 4.5416754 4.5421094
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The aforementioned free choice of a parametrization that is

especially suited for the numerical computation is only possible

because of the property of the Laplace–Beltrami operator to be

independent of any isometric reparametrization. This does not

hold for the classical continuous Laplace operator since it

operates on functions defined directly on the Euclidean space

(with Euclidean metric). Generally, we observe an advantage of

the Laplace–Beltrami operator over the simple Laplacian even

for planar domains: using the free choice of a parametrization

we have utilized something like ‘free form finite elements’. That

way, any surface can be triangulated without discretization error

at the boundary. The computations of eigenvalues based on

these parametrizations are very accurate.

Remark 1 (Spectral determination of some shapes)

Since we know what happens to the eigenvalues when scaling

the area (see Section 2), the eigenvalues of a disk with radius r

can be calculated as

ln;mZ
k2
n;m

r2
with the Bessel function Jnðkn;mÞZ0 (51)

Kac [40] proved that no planar shape is isospectral to the

disk, except the disk itself. Therefore, given a planar shape, it is

possible to calculate the radius with the first eigenvalue

rz
k0;1ffiffiffiffiffi
l1

p (52)

It is then possible to test the assumption that a given shape is a

disk with further eigenvalues. In fact, all Euclidean balls are

determined among solids by their spectra in any dimension. This

follows from the fact that the volume and the boundary area of

the domain are determined by its spectrum (cf. heat coefficients

in Eq. (18)) and using that an isoperimetric region (a region with

maximal volume related to the boundary size) in R
n is always a

ball (see [3]). A similar argument leads to the result that all

regular polygons D2R
2 with n sides are spectrally determined

among planar polygons with not more than n sides (since the

area and boundary ratio is again fixed by an isoperimetric

equality [3]). Furthermore, Tanno [59] proved that all round

spheres in dimensions up to 6 are completely characterized by

their spectra. For higher dimensions, the validity of this result

appears to be still open.

A similar eigenvalue calculation as in the disk case can be

done for the sphere. Even though the sphere is a surface with

curvature, the eigenvalues computed with this parametrization

are very accurate. With 5447 nodal points we approximated

l101 Z110z110:55599 (53)

with a relative error of 0.5055% in 4 s and with 11,522 nodal

points we obtained

l101 Z110z110:0003989 (54)

with a relative error of only 0.0004% in 73 s. Generally, these

high resolutions are not necessary for most applications.

In order to show that we can use a 3d triangle mesh (a

surface consisting of planar triangular faces) instead of a

parametrized surface as input, we calculated the eigenvalues of
a triangle mesh approximating the unit sphere with 11,522

degrees of freedom and 2560 triangles using cubic elements in

5 s. The eigenvalues

l1z0; l24z2:005; l45z6:014. (55)

are very close to the eigenvalues of the sphere (0, 2 and 6), as

expected, since the triangle mesh approximates the real surface

very exactly (with a maximal distance of only 0.0026) and

because of the continuity property of the spectrum (cf. Section

2.1). Yet it should be noted that this faceted sphere is of course

only an approximation and not the sphere itself, therefore the

spectra have to differ slightly from each other. An advantage of

using polygonal meshes instead of parametrized surfaces is that

no numeric integration (cubature) is needed by the FE-method

for the construction of the matrices. Since all triangles are

planar, the integral equations (34) can be evaluated for the

unity triangle once and then transported to an arbitrary triangle,

resulting in an enormous speed-up in computation.

For the computation of the eigenvalues of the round sphere,

the parameter space of the sphere was glued to itself. Similarly,

we computed the eigenvalues of tori. Since the correct

eigenvalues of non-flat tori are not known from theory, they

cannot be used to verify our computations and will therefore

not be discussed here. More complex objects can be

constructed by gluing different patches to each other. The

cylinder with spherical caps presented in Section 4 and Fig. 5,

for example, consists of three surface patches. Since the real

eigenvalues of this compound surface can be derived from

results in [4], we will present a comparison with our values (see

Table 5). For the first computation, we used the Laplace–

Beltrami operator on the surface with 4056 cubic elements

(18,254 degrees of freedom) to approximate the eigenvalues

very exactly. The construction of the matrices A and B together

with the pre-processing (refinement) took 58 s and the

computation of the first 10 smallest eigenvalues using the

ARPACK library approx. 5 s. In a faster computation, we only

used 216 cubic elements (974 degrees of freedom) and

computed the shown values in 3 s.

As examples of 3d-solids we will look at the 3d-cube and

the 3d-ball. The eigenvalues of the cuboid with side lengths a,

b, c are known from theory

lUM;N;OZp2 M2

a2
C

N2

b2
C

O2

c2

� �
with M;N;OZ1;2;. (56)
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The eigenvalues can also be computed numerically, using

the Laplacian in Euclidean space, a tetrahedrization of the cube

and an appropriate FEM computation. The smallest computed

eigenvalues are close to the correct ones:

l1;1;1 Z29:6112z29:6088;

l2;1;1 Z59:2343z59:2176
(57)

This computation was done with 6144 quadratic elements

(tetrahedra) resulting in 7471 degrees of freedom. The

construction of the matrices took 18 s and the computation of

the first 10 eigenvalues 20 s.

In the case of the ball, the computation is even more

interesting, since it is smoothly bounded and cannot be

discretized with linearly bounded tetrahedra without error.

Therefore, we used a tetrahedrized cube as parameter space and

the 3d-Laplace–Beltrami operator to calculate the eigenvalues

of the ball (see Fig. 14 for the tetrahedrization). Our

parametrization (with k$kN, k$k2 being the maximum and

Euclidean norm, respectively)

f ðu;v;wÞZ
sðu;v;wÞsN
sðu;v;wÞs2

u

v

w

0
B@

1
CA (58)

shrinks the cube with K1%u, v, w%1 onto the unit ball,

mapping the boundary of the cube onto the boundary of the

ball, thus making it possible to carry out the calculation without

having to glue the solid to itself but still without discretization

error at the boundary. The first approximated eigenvalues,

using the same resolution as in the example above

l1 Z9:88z9:8696;

l2 Z20:357z20:1907
(59)

are close to the real values (known from theory) but higher

eigenvalues are getting inaccurate due to the calculation with a

low resolution (refinement). In this example, the computation

of the matrices took 155 s and the computation of the first 10

eigenvalues 47 s.
6.2. Distance of Shape-DNAs

For the purpose of shape comparison and identification, we

need to apply a distance calculation to the spectra. In most

cases shape comparison is applied to objects independent of
Fig. 14. Ball with parameter-cube.
their size. Therefore, the Shape-DNAs (spectra) need to be

normalized first. Such a normalization can be achieved by

scaling the vector containing the eigenvalues with an

appropriate scaling factor. The following normalization

methods are possible: The Shape-DNA of a d-dimensional

Riemannian manifold can be.

(1) .divided by its first non-zero eigenvalue.

(2) .divided by the factor c of the fitting curve

f ðxÞZcx2=d (60)

fitting f(n)dln (cf. Weyl’s law in Eqs. (9) and (10)). For

dZ2 the factor c is simply the slope of the fitting line. The

dimension d can easily be determined if enough

eigenvalues are given.

(3) .multiplied by V2/d, where V is the Riemannian volume of

the manifold extracted by extrapolation from the spectrum

(for dZ2 this is simply a multiplication by the surface

area).

(4) .multiplied by V2/d, where V is the real Riemannian

volume that has been calculated externally via a pre-

process (again for dZ2 this is simply a multiplication by

the surface area).

(5) .multiplied by s2, if the scaling factor s of a given object

is known.

The first normalization method is sufficient when trying to

identify an object, since the Shape-DNA will be exactly the

same after normalization. The methods two to four can be used

if similar shapes are to be detected. It should be noted that the

slope of the fitting line is a rough approximation to 4p/A, where

A is the area of the two-dimensional manifold (see ‘Weyl’s

Law’ equation (9) in Section 2.3).

In the next step, the normalized Shape-DNAs are cropped to

lower the number of eigenvalues n (to 10–100) and the mutual

Euclidean distances of the resulting n-dimensional vectors of

eigenvalues can be calculated. Let LZ(l1,l2,.,ln) and

MZ(m1,m2,.,mn) two n-dimensional Shape-DNAs then the

p-norm of the distance can be expressed as

dp;nðL;MÞ :Z jjLKMjjp;nZ
Xn
iZ1

ðliKmiÞ
p

 !1=p

(61)

The Euclidean distance is simply d2,n. It is possible to use a

different distance (anotherp-norm, a symmetric Hausdorff distance

or the correlation) but our results show that the Euclidean distance

leads to good results. Further research will be done on applying

different weights to the eigenvalues (for example, emphasizing the

smaller eigenvalues by dividing ln through n).

6.3. Examples

6.3.1. Independence of representation

For the application of copyright protection, database retrieval

and quality assessment it is necessary that shapes can be

identified, even if the object has a different parametrization,

with a different spatial position and size. Therefore, we computed



Table 6

Eigenvalues of the iso-domains

EV Patch 1 Patch 2 Diff.

l1 1.4303697 1.3619184 0.0684513

l2 2.9252157 2.4698985 0.4553171

l3 3.4078884 3.4220482 0.0141597

l4 4.0994027 3.8857960 0.2136067

l5 4.6141383 5.3698187 0.7556803
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the Shape-DNAs of the three B-Spline patches B1, B10 and B2

(backs of display dummies) that can be found in Appendix. The

patch B10 is a scaled, translated and rotated version of patch B1

where the degree has been additionally raised. Patch B2 is a

deformation of B1 with a leaner waist and smaller shoulders. As

expected, the Shape-DNA of B1 and B10 are almost identical

(distance d2,50Z0.079) while the one of B2 differs from the others

by a distance of d2,50Z45.6 (when scaling with the fitting line and

using nZ50 values). When using different meshes for the

calculation, a different representation as a height function or even

when introducing small errors (at the control points), the Shape-

DNA comparison leads to the same clear results.

6.3.2. Continuous dependence on shape

In the subsequent example, we deform an ellipsoid and plot

the first eigenvalues. The deformation starts with an ellipsoid

with radius 1 in x and y direction and 0.5 in z direction. Then

the z-radius was slowly shifted up to 1.5 in 100 steps. Fig. 15

shows that the eigenvalues move continuously, as discussed

earlier and described in property [SIMILARITY]. In the case of

the sphere (z-radiusZ1 in step 50), the graphs describing the

eigenvalues intersect because many eigenspaces coincide.

6.3.3. Discrimination power

To show how the spectrum can distinguish between

different shapes with the same area, perimeter, incircle,

circumcircle and sum of angles, the eigenvalues of the two

polygons Isovol I1 and I2 (see Appendix) have been

calculated. It can be seen in Table 6 that the first few

eigenvalues of the two patches are quite different from

each other. The Euclidean distance of the two normalized
Fig. 15. Spectra of the ellipsoid deformation depends continuously on the

shape.
50-dimensional Shape-DNAs is d2,50Z53.5. Even when

transforming I1 slowly into I2 by moving the north bay to

the right (and keeping the geometric properties specified

above constant), the corresponding continuous movement of

the eigenvalues can be detected.
6.3.4. Discrimination of the GWW-prisms

In Section 2.2, we presented an example of isospectral but

not isometric planar shapes. Of course, isospectral but not

congruent solid bodies in 3d as well. In fact they can be

easily constructed from planar shapes by sweeping the

isospectral 2d-domains into a third orthogonal direction for a

distance h. The 3d prisms constructed that way are

isospectral when they have the same height h. Fig. 16

shows two such prisms that were constructed with the planar

GWW drums found by Gordon et al. [34]. The theoretical

eigenvalues l and the eigenfunctions f of the GWW-prisms

with height h can be computed from the eigenvalues m and

the eigenfunctions s of the 2d-GWW-drums via this formula

(for any constant c)

lZmCl2 (62)

f ðx;y;zÞZsðx;yÞc sinðlzÞ (63)

with ld(Np/h) and N2NO0. This result can be obtained by

separation of the new variable z in the Helmholtz equation

(6). It can be verified quite easily by plugging the solution

into (6) and noting that DsZKms (since it was a solution to

the 2d problem):

Df ZDðcs sinðlzÞÞ (64)

Df ZcðDs sinðlzÞKsl2 sinðlzÞÞ (65)

Df ZKðmCl2Þcs sinðlzÞZKðmCl2Þf (66)
Fig. 16. GWW solid isospectral prisms.



Table 7

Eigenvalues of the GWW-prisms

EV Theoretical Prism 1 Prism 2

l1 5.0053451 5.0128509 5.0129320

l2 6.1229108 6.1317422 6.1317167

l3 7.6429605 7.6596645 7.6595216

l4 9.0049585 9.0151974 9.0153987
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and by verifying the boundary condition for zZ0 and h

(sin(0)Z0Zsin(lh)).

At first we will present our computational results together

with the theoretical results employing the eigenvalues of the

planar GWW drums as computed very exactly by Driscoll [26].

It can be seen in Table 7 that eigenvalues of the two prisms

(with height hZ2) are very similar (due to their similar

tetrahedrization). The computed eigenvalues are very close to

the theoretical ones, even though this is a 3d example and the

FEM computation in 3d is not as exact as in 2d because of the

lower resolution possible.

The interesting fact about these 3d isospectral solids is that,

even though they cannot be distinguished by the Shape-DNA

of their body, the Shape-DNAs of their boundary shells can tell

them apart. Since we can use a much higher mesh refinement in

2d, the computation of the shell will be much more accurate

and reliable. In Table 8, we present the fourth eigenvalue of the

two prism shells (with height hZ2) for different mesh

resolutions (edge length l).

It can be clearly seen that the difference is quite large (with

13%) and even grows when the refinement gets smaller and

thus the computation more accurate. The computation with the

highest resolution containing 3872 cubic elements and 17,426

degrees of freedom should be highly accurate. Still the

construction of the matrices A and B took only a second,

because all the faces are planar and therefore no numerical

integration is needed. For triangle meshes in general, the

integrals can be computed once for the unity triangle and then

be transformed to an arbitrary triangle. The computation of the

first 10 eigenvalues, on the other hand, took 928 s due to the

high degree of freedom. Note that the computation in the case

of the lowest resolution only takes 2 s and still yields

sufficiently accurate results. There is even more evidence

indicating that the Shape-DNA of the prism-shells has been

computed sufficiently exact to distinguish the two shapes. We

computed the eigenvalues of the shells scaled by 1:0=
ffiffiffi
A

p
,

whose surface areas are equal to 1. Their resulting fourth
Table 8

l4 of the GWW prism-shells

Edge Prism 1 Prism 2 Diff-abs Diff-rel (%)

l 0.57145 0.65719 0.08575 13.0474

2l/3 0.57133 0.65711 0.08578 13.0543

0.5l 0.57128 0.65708 0.08580 13.0571

0.4l 0.57125 0.65706 0.08581 13.0590
eigenvalues are 39.4 and 45.3, respectively (of course still a

difference of approx. 13%). Even though some eigenvalues

differ that much, we were able to extract the area (1.004 and

1.007 for the two shells) very exactly by extrapolation using the

first 500 eigenvalues. It is remarkable that even though the

spectra of the two shells differ significantly, their surface areas,

identical for both shells, can be computed very exactly from the

different spectra.
6.3.5. Database retrieval

In order to see how the Shape-DNA can help to distinguish

many different surfaces, we applied our technique to a database

of 1000 randomly generated B-Spline surface patches (with

3!3 up to 6!6 control points and degrees ranging from 2 to

4). For these patches the first 1741 eigenvalues were calculated

and stored with the shapes. By using the Euclidean distance

d2,11 of the normalized (divided by l1) 11-dimensional vectors

of eigenvalues, each patch could be uniquely identified even

with deliberately different (not optimal) meshes introducing

distinct calculation errors. Still, these inaccurate eigenvalues

yielded distances of less than 0.02 between the original and the

modified patch. Furthermore, from all the 500,000 possible

pairs of different patches only 300 had a distance of less than

0.3 to each other, none was closer than 0.15. This confirms our

assumption that our method is sensitive enough to be used for

identifying patches even with reduced capacities for calcu-

lation (since only the first 11 eigenvalues were used). The

construction of the matrices A and B for a given patch took

approximately 100 s (we used the SISL Spline Library) and the

computation of the first 10 eigenvalues took less than a second

as did the actual comparison of a computed Shape-DNA with

all the Shape-DNA contained in the database. The relatively

slow construction of the matrices is due to the fact that for the

computation of the integrals (Eq. (34)) in the case of a curved

surface patch the gjk of the patch are needed. In the case of

triangulated surface meshes, the computation is clearly much

faster, since all triangles are planar and no numerical

integration is necessary. Fig. 17 shows an accumulated plot

of the first 200 eigenvalues after normalization with the first

eigenvalue l1. In an earlier experiment, we tried the same

techniques using a database of 1625 randomly generated
Fig. 17. Accumulated spectra (ln) of the patches.



Fig. 18. 2d MDS plot of Shape-DNAs.

M. Reuter et al. / Computer-Aided Design 38 (2006) 342–366362
polynomial patches of degree 10. The results were similar:

Each patch could be easily identified by its first few

eigenvalues.

It is perfectly possible that one could also identify any single

NURBS patch within a large collection of NURBS patches

using other isometric invariants like: boundary length, surface

area, Gauss curvature integral, geodesic curvature of the

boundary curve, Euler characteristic, etc. However, since these

invariants contain very little information with respect to the

amount of completeness up to which they determine the shape

of an object, it is not very difficult to construct examples using

(e.g. non-isometric) subdomains of the plane (see Section

6.3.3) and of the sphere sharing surface area, length and total

curvature of their boundary curves. Those subdomains share

also the Gauss curvature that is either zero or determined by the

area of the respective domain in these examples. It confirms the

discrimination power of the spectrum that those domains

sharing the aforementioned geometric invariants have signifi-

cant differences even in their respective first few eigenvalues

(cf. Section 6.3.3). Obviously, the spectrum must have more

discrimination power than the combination of the invariants

consisting of length of boundary curves and surface area, as

those invariants and even more information can be computed

from the spectrum. Additionally, employing the spectrum of

the double of the given surface, all the geometric information

described in Section 2.3 can be obtained.
6.3.6. Shape matching

To demonstrate how the Shape-DNA can be used for shape

matching we will calculate the Shape-DNAs of all the objects

depicted in Appendix. We have already referred to B1, B10, B2,

I1 and I2 in Sections 6.3.1 and 6.3.3. The objects N1 and N2

(parts of a bottle neck) are deformations of each other (N2 is

slimmer). The Shape-DNA of the unit square has been

calculated with our FEM method (S1) and analytically. In the

case of the square (even for an arbitrary rectangle, see Courant

[20, p. 258]) the exact eigenvalues are known. Therefore, they

can be used to verify the computational accuracy of our

numerical results. The eigenvalues of a rectangular area with

edge lengths a and b can be computed analytically as follows:

lUM;N Zp2 M2

a2
C

N2

b2

� �
with M;NZ1;2;. (67)

For the comparison we also computed these exact values

(represented by SR). The disk’s Shape-DNA has been

computed with a fine (D1) and a coarser (D2) mesh (both

having smooth boundary) and by using a polygonal disk

approximation (linearly bordered D3). All of these objects are

now compared with each other in a way that not only identifies

identical shapes, but also detects similarities. For this purpose,

the Shape-DNAs were first normalized by the slope of the

fitting line (Eq. (60)) and then cropped to contain only the first

50 eigenvalues. To visualize their positions, these vectors were

embedded linearly into the two-dimensional space with the

help of classical multidimensional scaling (MDS), a method

performing a principal coordinate analysis (PCA). When
plotting only the first two dimensions, the display error of the

real mutual distances is kept as small as possible [21]. The 2d-

MDS plot (Fig. 18) can be understood as an orthogonal

projection of the 50-dimensional vectors onto their best 2d-

fitting-plane. It shows very well how identical objects are

mapped to the same spot and how similar objects form groups.

These are very good results, considering that only the first two

most important dimensions are plotted and that further

information is contained in higher (less important) dimensions.

As a final example, we will compare the objects (given as

triangular meshes) depicted in Appendix. The Shape-DNA of

the rabbit has been computed for three meshes of different

resolution (containing 10,000, 1000 and 400 triangles). The

simplified meshes could be quickly obtained with the program

QSlim (using a method described in Garland [31]). Since the

rabbit looks like a deformed ellipsoid, we computed the Shape-

DNA of the ellipsoid as well. The helmet is in fact nearly

isometric to the ellipsoid, even though it does not look like it,

because it consists of an inner and an outer shell, which are

connected. Flipping the inner shell to the outside, one gets a

deformed ellipsoid. Another group of test objects consists of

animals (a camel, a cat, a cow and a horse), all of which have

legs or arms, some have tails and some long necks. Another

subject is the Santa, who is also equipped with arms and legs

and wears a long jelly bag cap. The final test group is supplied

by the screwdriver with its deformations. First the tip has been

stretched and twisted, then bend over and last but not least the

handle has been deformed. The stretching and the deformation

of the handle are the most serious changes since the surface

area (being a global feature) is modified.

The 2d MDS plot, that has been constructed like in the

example before, can be seen in Fig. 19. Again we observe a

nice clustering of the objects. The strongest modifications of

the screwdriver are well reflected by the larger distance of the

corresponding Shape-DNA projections. Furthermore, the

deformed ellipsoids are well separated from the animals with

the Santa. Note that the MDS plot is merely used for the

visualization of the position of the 50-dimensional Shape-

DNA. The measuring of the distance is done in higher

dimensions. Even though the MDS plot shows the first two



Fig. 19. 2d MDS plot of mesh Shape-DNAs.
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most important principal components, important information

might be contained in higher dimensions as well. A

dimensionality reduction therefore might lead to the collapse

of clusters onto each other. For real time database applications,

the eigenvalues of an object have to be computed very fast.

This can be achieved with coarser meshes (that can be

constructed quickly) yielding very similar Shape-DNA as can

be seen in the case of the rabbit.

Furthermore, when dealing with a large database, the search

for nearest neighbors might be too slow in high dimensional

spaces. Then it might be helpful that global shape information is

already contained in the first eigenvalues while smaller details

seem to be encoded in higher values. Because of the property

[SIMILARITY], the Shape-DNA depends continuously on the

shape deformation. As we have seen in Section 6.3.2, the

deformation of an object changes the li(t) continuously with a

deformation parameter t. Therefore, the Shape-DNA of all

shapes that can possibly be obtained through a deformation of an

object are contained in a path-connected subset.

It is generally possible that all n dimensions of the space

containing the Shape-DNA are equally important when filled

with the Shape-DNA of all deformations of a single shape. In

real world applications we often want to compare one object

with the finite amount of objects contained in a database. The

Shape-DNA of these objects often do not vary equally strongly

in all dimensions n. With the help of PCA we can choose the

dimension n0!n of the best fitting n0-dimensional subspace

(the shape space) in a way that keeps the approximation error

of the set of Shape-DNA sufficiently small. This leads to a

distinct dimensionality reduction with only little error. The

Shape-DNA can then be represented in the lower dimensional

shape space (in more than two dimensions as in the plots above,

but still in less than the number of eigenvalues needed for

efficient comparison). Similar to the approach of Turk and

Pentland [61], who use eigenvectors of PCA (called

eigenfaces) for face recognition, it can then be decided quickly

if a new geometric object has a match in the database

represented by the point set of Shape-DNA by measuring the

distance of its Shape-DNA to shape space and by checking if its
projection into shape space lies in or close to a cluster. If a

Shape-DNA lies far away from the shape space and the

corresponding object has to be added to the database, a new

shape space has to be constructed, containing the new object.

For this purpose, the PCA needs to be repeated for the Shape-

DNA of all objects, so that future queries can again be

processed quickly.

7. Conclusion

We have introduced a novel method that uses the

eigenvalues of the Laplace–Beltrami operator as Shape-DNA

(a fingerprint) for a given 2d or 3d manifold (surface or solid).

Even though the proposed Shape-DNA does not meet the

property [COMPLETENESS] entirely, since (artificially

constructed) identical twins exist, we were able to demonstrate

that it satisfies other important properties (like [ISOMETRY],

[SCALING], [SIMILARITY], [EFFICIENCY], [COM-

PRESSION] and [PHYSICALITY]). We introduced the

possibility of numerically calculating the Shape-DNA for

different types of geometric objects (compound parametrized

surfaces including NURBS, polygonal meshes and solid

polyhedra). The computed results were shown to be indepen-

dent of the given spatial location and scaled size and above all

independent of the objects representation (especially of the

chosen parametrization). Our method is also robust under

variations in the quality of the model. We demonstrated that

shape identification and comparison can be done using only a

few eigenvalues, making it possible to locate objects rapidly

within huge databases. Via comparison of the Shape-DNA, it is

possible to compare a suspicious object with a copyrighted one

to detect if the object might be an illegal copy. As shown, it is

even possible to use the Euclidean distance of normalized

Shape-DNA to detect similar objects. Shape-DNA can also be

used as a quality measure when converting surfaces or solids

into different representations utilizing the fact that the spectrum

of a correctly converted object must agree with the spectrum of

the original one.

We proved some propositions about the mutual indepen-

dence of the eigenvalues and about the rapid convergence of

the heat trace series. Moreover, we succeeded in numerically

extracting the volume, boundary length and Euler character-

istic from the computed Shape-DNA of the respective surface.

Those numerical computations appear to be new.

Further research will extend this work to implicitly defined

surfaces and solids employing, e.g. new concepts [12,50]

useful to mesh implicit surfaces. As another extension, parallel

processing and multigrid methods could be used to speed up

and improve our eigenvalue computation making it possible to

use higher resolutions and to compute spectra, especially of 3d-

solids, more accurately. It is of interest as well as to study the

combination of subdivision (or feature decomposition tech-

niques) with the Shape-DNA to be able to match object parts.

Additionally, more experiments will be done on larger shape

databases (for meshes and for CAD-models), extending the

concepts used for similarity detection (i.e. PCA) as described in

the last section.
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