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Abstract This chapter presents an overview on contributions of the Welfenlab to
GRK 615. Those contributions partial to computational differential geometry in-
clude computations of geodesic medial axis, cut locus, geodesic Voronoi diagrams,
(“shortest”) geodesics joining two given points, “focal sets and conjugate loci” in
Riemannian manifolds and the application of the medial axis on metal forming sim-
ulation. The chapter includes also the computation of Laplace spectra of surfaces,
solids and images and the application of those Laplace spectra to recognize the re-
spective objects in large collections of surfaces, solids and images. Beyond that this
article touches also on the origin of the afore-mentioned works including research
done at the Welfenlab as well as works that can be traced back to the graduate stud-
ies of the first author.

1 Introduction

The occasion of writing a report on the contributions of the Welfenlab to GRK 615
gives the first author of this article an opportunity to look back to those years when
many of his research projects related to the above-mentioned contributions had its
origin. Those were the years of F.-E. Wolter’s own graduate studies in Berlin in
the late seventies and early eighties of the last century. There was a time in the
1970s when research on the Riemannian Laplacian operator and its eigenvalues was
extremely popular in global differential geometry even more than today. In those
days, many members in the community of differential geometry still had in their
ears Lipman Bers’ tersely formulated question “Can one hear the shape of a drum?”

In other words, is the shape of a two-dimensional bounded region determined by
the eigenvalues of its corresponding Laplacian operator?
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Indeed it was to a significant extent this question and the partly available the-
oretical knowledge in those days that motivated Wolter early on in the eighties
to consider it being an exciting project to investigate via numerical experiments
if Laplace spectra could be employed to define feature vectors that could be used as
fingerprints to practically distinguish different objects in large collections of similar
surfaces and solids. That exciting project had to wait until around 1997 when there
was a chance to pursue it at the Welfenlab that had been built up by the first author
in 1995 when he came to the University of Hannover. It was in 1997 when he asked
two students, Herbst and Sust, to present two seminars at the Welfenlab dealing with
Gordon’s examples of 1992 [17] and (the respective theoretical background) show-
ing the existence of planar polygonal regions that are isospectral but not congruent.
This was the starting point for a series of diploma theses investigating Laplace spec-
tra of planar regions; see [3, 20] for curved surfaces aiming at distinguishing those
geometric entities by their Laplace spectra. This work was taken up again in 2000
by Peinecke and Reuter studying in their respective diploma theses how Laplace
spectra could be used to classify geometric entities like planar domains and surfaces
while Peinecke studied the respective problem for images. Peinecke and Reuter be-
came “Kollegiaten” in the GRK 615. Their diploma and especially their PhD re-
search extending and deepening their diploma research built up one important line
of research partial to the area of computational differential geometry contributed by
the Welfenlab to the GRK 615. We will give more details on this work in Section 4.

In the years of Wolter’s graduate research the aforementioned popularity of re-
search on Laplacian spectra was not shared by research related to the Riemannian
cut locus – a subject that finally became the center of Wolter’s PhD research [45].
The latter research works probably had its origin in Wolter’s unsupervised studies
on geodesics as presented in the book Variational Theory of Geodesics by Postnikov
[33]. This book contains an error on page 101, stating there that the squared Rieman-
nian distance function with respect to any given reference point p is differentiable
everywhere on a complete Riemannian manifold M. In fact the latter squared dis-
tance function d2(p,x) is not differentiable in a dense subset Se(p) of the cut locus
C(p) of p, implying that a complete Riemannian manifold must be diffeomorphic
to Rn in case there exists one point p on M such that the squared distance function
d2(p,x) is differentiable on all M. Here Se(p) contains those points in C(p) hav-
ing at least two distinct shortest geodesic joins to p. Those results firstly observed
by Wolter [44] subsequently lead to new characterizations of the cut locus in terms
of differentiability properties of the distance function. In his diploma thesis [43],
Wolter looked into the problem of generalizing classical geodesics in Riemannian
manifolds to geodesics in bordered Riemannian manifolds. Here the geodesics be-
ing locally shortest paths joining any two points in the manifold may have contact
with its boundary but must stay inside the manifold. Like in the classical case, the
intrinsic distance of any two given points in the bordered manifold may be defined
as infimum of lengths of continuously differentiable paths joining the two given
points. It turns out that various basic concepts like distance functions and cut loci
may be transferred into the situation of bordered manifolds as well. However, there
occur new phenomena and new complications as shortest paths in bordered mani-
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folds may bifurcate at boundary points. This implies that initial direction and length
will not determine uniquely the end point of the geodesic related to the respective
start point. Clearly, this causes difficulties for efforts aiming at defining generaliza-
tions of classical exponential maps used to control the paths of geodesics.

All those works may be seen as partial to a new approach studying global and
local relations between the shape of bordered and unbordered Riemannian geomet-
ric objects and its respective intrinsic distance geometry. Here, shape would include
topological properties as well as properties determining the isometry type of a geo-
metric object or even more specifically the congruence type, i.e., the geometry type
up to a Euclidean motion. In that sense the theory built via the (Riemannian) me-
dial axis and cut locus serves the purpose of global and local shape cognition,
reconstruction and classification. The latter property may be seen as an aspect of
shape cognition. Note that research on the shape cognition problem could be viewed
as a central goal of the computational efforts pertaining to the studies of spectral
geometry done at the Welfenlab that were mentioned in the beginning of this intro-
duction.

All the afore-mentioned works of Wolter prior to 1987 were essentially theor-
etical considerations and it was in 1988 at Purdue University where Wolter firstly
created a software system to be used for computational differential geometry [48].
This research was partial to the ARO (US Army Office of Research) funded “Pro-
ject Riemann” yielding a software system implemented in C, essentially capable of
real time computing and visualizing geodesics and curvature lines on parametrically
and implicitly defined surfaces being described by the user in a very flexible way
via symbolically defined elementary functions. Most of the software development
in Project Riemann was done by undergraduate students supervised by Wolter who
explained in a summer course to those students the theoretical background and the
algorithms being implemented in the system. It is remarkable that Project Riemann
ended up as a state-of-the-art system for the respective computational differential
geometry tasks as in those days apparently no competing system existed that could
perform those computations in a similar generality.

Later on at MIT starting in early 1989, Wolter pursued research in the area of
computational differential geometry with an emphasis on applications related to
geometric modeling. In fact Wolter’s contributions in those days may be viewed
as efforts to appropriately transfer concepts from local and global classical differ-
ential geometry to computational geometry to be used in geometric modeling. All
those works were an effort to establish the new area of computational differential
geometry. Such an enterprise was still in the very beginning in the years prior to
1990.

Although the focus of Wolter’s research on computational differential geometry
during his years at MIT (1989–1994) were not those topics that he had pursued in his
theoretical thesis works, some basic steps were taken preparing for later works that
dealt with computational efforts in the area of the medial axis and its geodesic coun-
terpart. In his diploma and doctoral theses [43,45], Wolter had developed the found-
ations for the theory of geodesics and cut loci in the general setting of bordered and
unbordered Riemannian manifolds with mathematical rigor. Since this technically
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involved presentation was difficult to digest for computer scientists and engineers,
a condensed version focusing on solids in R3 was written as MIT report stemming
from December 1991 being later presented as a Sea Grant report in the national Sea
Grant Library [46]. This report contains the mathematical foundation for various
fundamental results on the medial axis and it explains also the relation between the
medial axis and the much older concept of the cut locus.

Two results from [46], stated further down, were the basis for later works at the
Welfenlab, as well as in the community pursuing research on the medial axis. Those
two results involve the medial axis of a solid.

The first result to be mentioned here is called topological shape theorem of the
medial axis. It states that the medial axis of a solid with twice continuously dif-
ferentiable boundary in Euclidean space may be viewed as deformation retract of
the solid. This result even holds under weaker regularity assumptions for the solid’s
boundary. The second basic result is the shape reconstruction theorem. It states that
any solid can be reconstructed from its medial axis transform. The latter result later
on lead to the so-called “medial modeller” useful to efficiently design 3D solids in
real time via modifying their medial axis and respective radius function. An early
simple prototype of this 3D modeller was presented at the Welfenlab in Howind’s
diploma thesis in 1998 [19]. A more advanced medial modeller was developed in
the diploma thesis of Böttcher in 2004 [11, 50].

The variety of cut locus applications arises from the topological flexibility of the
reference set. In case of a solid S, the cut locus or the medial axis transformation
provides a compressed representation of S, that allows for intuitive shape model-
ing [49, 50]. According to the topological shape theorem mentioned above the me-
dial axis itself preserves topological properties of the reference solid. The cut locus
of a single point p on a complete Riemannian manifold can be interpreted as the
natural glueing seam of charts of geodesic polar coordinates with respect to p and
is therefore of natural interest when it comes to distance computations.

More precisely, any compact or complete Riemannian manifold may be obtained
by (glueing together) identifying points on the boundary of a disc in the cut locus
points Cp of a point p on the manifold. This glueing seam concept holds also for
the construction of solids with smooth boundary. In the latter case the interior nor-
mal collar whose border is given by the solids boundary and by an offset surface
(curve respectively) of the solids boundary is topologically glued as to become the
solid. Here the respective glueing seam is defined by the solids medial axis, con-
taining intersections points of segments created by (interior) normals to the solid‘s
boundary.

At the Welfenlab since its foundation in 1994, a whole line of computational
differential geometry research was involved with the medial axis, the cut locus and
closely related concepts in Riemannian and Euclidean settings. Here, the geodesic
medial axis is defined with regard to a bordered n-dimensional Riemannian subman-
ifold S of a complete n-dimensional Riemannian manifold and contains all centers
of maximal geodesic balls contained in S.

Medial sets consist of points being equidistantial with respect to two or more ref-
erence sets. First computations of medial curves on regions in the Euclidean plane
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Fig. 1 Medial axis, cut locus and voronoi diagram.

were done by Wolter in 1990 and later on in 1995 on surfaces at the Welfenlab,
see [35]. This lead to the computation of Voronoi diagrams for points on parametric
surfaces by Kunze [22] and the computation of the geodesic (Riemannian) medial
axis of bordered subsets of parametric surfaces in Euclidean 3-space [5]. Many res-
ults from these work are part of the PhD thesis of Rausch [34]. Funded by the GRK
615, this line of research was later on pursued in Naß’ PhD thesis [18] and finally
in the still ongoing thesis works of Thielhelm. The ongoing thesis works of Blanke
that had been funded by GRK 615 is dealing with applications of the medial axis in
two and three dimensions to be used for rapid modeling of metal forming processes.
We will present an outline of the latter line of research in Section 3.

2 Medial Sets in Euclidean and Riemannian Spaces

For the purpose of clarity we shall start with a short explanation of the aforemen-
tioned geometric concepts.

The medial axis M(S) of a reference solid S ∈ R
d is defined by the set of all

points being centers of maximal balls contained in S. The function r : M(S) → R≥0
assigning to any medial axis point p the radius of the maximal ball with center p
and radius r(p) is called radius function of the medial axis. The pair (M(S),r) of
medial axis and respective radius function constitutes the medial axis transform of
a solid.

The medial set MS(A,B) of two closed reference sets A, B is the set of all points
with equal distance to A and B.

To investigate more general situations it is convenient to introduce the cut locus
C(A) of a given reference set A ⊆ Rd as the closure of the set of all points, that
have at least two shortest paths to the reference set. In fact, the medial axis can
be understood as a special case of the cut locus, since we have M(S) = C(∂S)∩ S,
where ∂S denotes the topological border of the solid S [46].

For a discrete and finite set of points A = {p1, . . . , pn} the cut locus of A is usu-
ally referred to as the Voronoi diagram of A, which has found numerous applications
reaching from geophysics to physiology, that usually base on a distance related par-
tition of R

d with respect to A.
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Fig. 2 Complications arising from non-Euclidean situations.

A generalization of the cut locus concept to non-Euclidean spaces M with met-
ric dM requires the existence of so-called distance realizing paths, which are paths
that connect two given points p,q ∈ M with length dM(p,q). A special class of met-
ric spaces of natural interest are Riemannian manifolds. A Riemannian manifold
is defined as a differentiable manifold M together with a family of metric tensors
gp. Among Riemannian manifolds are those ones of particular importance that are
complete as metric spaces. Those spaces are called complete Riemannian mani-
folds. According to a theorem of Hopf and Rinow a complete Riemannian manifold
may also be characterized by the property that every geodesic ray may be exten-
ded up to infinity. The above-mentioned theorem of Hopf and Rinow also says that
in a complete Riemannian manifold any two given points can be joined by a dis-
tance realizing path. Such a path is often called distance minimizer. Uniqueness of
minimal geodesic joins however, which holds in the Euclidean case, can not be guar-
anteed and this leads to significant difficulties in the context of geodesic coordinates
and distance computation. We would like to illustrate this with an example shown in
Fig. 2. Here the left part shows that on a surface the cut locus of a single point indic-
ated by the red colored set can have a complicated structure while the cut locus of a
point in the plane is empty. The right part of Fig. 2 shows that on surfaces a Voronoi
diagram (being the cut locus of a finite point set) may contain compact proximity re-
gions bounded by two edges only while in the Euclidean plane a compact proximity
region of some point has at least three edges.

To be more precise we shall give some basics on the connection of metric, dis-
tance function, metric tensor and the length of curves in n-dimensional Riemannian
manifolds M with metric tensor gp : TpM × TpM → R≥0. Here TpM denotes the
tangent space of a Riemannian manifold M in the point p. In local coordinates the
metric tensor gp can be described by a matrix gi j depending on the (foot) point p of
the respective tangent space TpM. For the sake of simplicity we focus on differenti-
able curves and refer to [15] or especially [43, 45] for a more detailed introduction
and discussion. The length L of a curve c : [0,1]→ M is given by
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L(c) :=
∫ 1

0

√
g(c′(t),c′(t))dt,

and minimizing over all curves that connect two arbitrary points p,q ∈ M we obtain
a metric space in the sense of point set topology by defining

dM(p,q) := inf{L(c)|c(0) = p,c(1) = q}

on M, the so called Riemannian distance. The respective minima are called distance
minimizers or shortest paths. To determine the distance for an arbitrary pair of points
one obviously has to compute the corresponding distance minimizing path joining
the points. Unfortunately it is usually very difficult to compute globally shortest
paths.

However, their local counterparts, so-called geodesics, can be computed using
the geodesic differential equations:

γk
′′(s)+∑

i, j
Γ k

i j γi
′(s)γ j

′(s) = 0, (1)

where the Christoffel symbols are the local coefficients of the Levi-Civita connec-
tion:

Γ k
i j =

1
2 ∑

m
gmk

(
∂

∂x j
gim +

∂
∂xi

g jm − ∂
∂xm

gi j

)

.

Here gi j denotes the inverse of the metric tensor matrix gi j. Note that a (glob-
ally) shortest path joining two points is always a geodesic but not vice versa. The
descriptions above make use of a local parametrization X : Rn → M of M, that
maps the coordinates x1, . . . ,xn diffeomorphic to M. Here we assume for simpli-
city that M is a submanifold of Rk, but the concept holds also within a more gen-
eral setting. A geodesic starting at p = X(p1, . . . , pn) ∈ M with the initial direction
v = DX ·(v1, . . . ,vn)∈ TpM is given by γ(s) := X(x(s)) := X(γ1(s), . . . ,γn(s)), when
choosing the initial values of (1) according to γk(0) = pk, γk

′(0) = vk.
To simplify the notation we introduce the exponential map expp : TpM → M by

expp(v) := γ(1), i.e. mapping an initial starting direction to a corresponding point
q = expp(v) ∈ M. The exponential map enables us to use coordinates of the tangent
space TpM to parametrize M, via so-called geodesic coordinates. Using for example
polar coordinates (s,ϕ), ϕ = (ϕ1, . . . ,ϕn−1) to parametrize TpM leads to geodesic
polar coordinates denoted by

Op(s,ϕ) := expp(v(s,ϕ)).

Op is usually referred to as offset function of p. Figure 3 shows an example of
isolines of geodesic polar coordinates.

For a more complicated reference set, represented by a d-dimensional submani-
fold N ⊂M with local parametrization ξ : Rd →N and coordinates ξ = (ξ1, . . . ,ξd),
the corresponding offset is given by
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ON(ξ ,s,ϕ) := expξ (v(s,ϕ)), (2)

with v ∈ TpN⊥ where the tangent space TpM splits according to TpM = TpN⊕TpN⊥

and ϕ = (ϕ1, . . . ,ϕn−d−1).
The offset function Op and its partial derivative ∂Op/∂ s is computed by nu-

merically tracing the ODE (1). In the context of distance or medial computations
it is also necessary to obtain the partial derivatives with respect to the paramet-
ers ξ or ϕ , i.e. to compute the variation of geodesic coordinates. More generally,
consider a one parameter family of geodesics c : I × [0,a] → M where each curve
s 
→ cη (s) := c(η ,s) is a geodesic. The derivative

w(s) :=
∂

∂η
c(η0,s)

defines a vector field along γ := cη0
, which is a so-called Jacobi field that satisfies

the Jacobi equation
D2

ds2 w+ R(w,γ ′)γ ′ = 0, (3)

where R is the Riemannian curvature tensor and D/ds is the covariant derivative
along γ . For a detailed definition and description of these two central concepts of
differential geometry we refer to [15]. The vector field w can be easily decomposed
into two components one parallel to the geodesic and the other orthogonal to the
geodesic. In the two-dimensional (surface) case the orthogonal component being
contained in a one-dimensional subspace of the tangent plane can be described by
a real number y(s) at the point γ(s) of the geodesic γ . Hence here y(s) describes
the oriented length of the Jacobi field, characterizing it completely. The function y
satisfies the simplified equation

y′′(s)+ K(γ(s))y(s) = 0, (4)

with K being the Gaussian curvature along γ . For general n-dimensional Riemannian
manifolds solving the Jacobi equation (3) boils down to solving an n-dimensional
second order linear system of differential equations along a geodesic γ . This is equi-
valent to solving a 2n-dimensional first order system of differential equations along
γ(s). Here in addition to the initial values of geodesics (cf. (1)) we need to provide
also the initial values of the vector field w. These, however arise from the special
form of variation.

Of particular interest are the points where the differential of Op becomes singular.
These points make up the so-called focal set of the reference object here being a
point p. In this case the focal set of p is also called (first) conjugate locus of p.
Within our setting, points located on the focal set (or conjugate locus) of p can be
characterized by the condition

detDOp(s,ϕ) = 0 with DOp = (∂sOp,∂φ Op) =
(
∂sOp,y(s)(∂sOp)⊥

)
,
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Fig. 3 Geodesics and focal curves.

implying that the focal set of p in two dimensions can described by the implicit
equation y(s,ϕ) = 0. We use the latter equation for implicitly describing a focal
curve being a (connected) component of the focal set of p and get

y(s(t),ϕ(t)) = 0. (5)

We want to trace the above-mentioned focal curve by integrating its tangent vector
(s′(t),ϕ ′(t)). The latter may be obtained from equation (5) by differentiating with
respect to t and applying the chain rule. Therefore in two dimensions the focal set
can be computed by numerically tracing the zero set of y using the implicit differ-
ential equation

∂y
∂ s

s′(t)+
∂y
∂ϕ

ϕ ′(t) = 0

That leads to a solution s(t),ϕ(t) which describes the focal set in polar coordinates
with respect to p [35]. (The respective detailed computations needed to compute
tangent vectors of the focal curve are quite involved. They also employ derivatives
of the Gaussian curvature.) An example of resulting focal curves is shown in Fig. 3.

The tools of differential geometry presented above are used to state and solve
problems such as the shortest-distance problem or the computation of medial sets
in higher dimensional Riemannian manifolds. (For the sake of simplicity we keep
the same symbolic notation with ϕ = (ϕ1, . . . ,ϕn−1) now referring to a vectorial
parameter.)

For example, to determine the distance of two arbitrary points p,q∈M we can re-
duce the challenge of finding the shortest path from p to q to computing all geodesics
that connect p and q, since every shortest path has to be a geodesic. This translates
to finding tuples of geodesic parameters (s j,ϕ j) that satisfy

Op(s j,ϕ j) = q. (6)
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Fig. 4 Medial axis and Voronoi diagram on 2D manifolds ( [5, 22, 49]).

This boundary value problem can be looked upon as the problem to solve a nonlinear
system of n equations with the n unknowns s j,ϕ j

1
, . . . ,ϕ j

n−1
.

The computation of the medial set of two reference sets A and B in M translates
to finding tuples of geodesic parameters (ξ ,η ,ϕ ,ψ ,s) that satisfy

F(ξ ,η ,ϕ ,ψ ,s) := OA(ξ ,s,ϕ)−OB(η ,s,ψ) = 0,

where OA,OB are the generalized offset functions defined in (2). By differentiation
we obtain a differential equation, called medial differential equation, that can be
used to trace (isolines) of the medial set. For example, in case A and B are two
points and using t as the parameter of a component in the one-dimensional medial
set we obtain

(
∂OA

∂ϕ

∣
∣
∣
∣∣
− ∂OB

∂ψ

∣
∣
∣
∣∣

∂OA

∂ s
− ∂OB

∂ s

)

· d
dt

⎛

⎝
ϕ(t)
ψ(t)
s(t)

⎞

⎠ = 0

In the years between 1996 and 1998/99 the research on computing geodesic me-
dial curves, geodesic medial axes on bordered subsurfaces of spline patches as well
as computing geodesic Voronoi diagrams on parametric surfaces had reached some
maturity. Among the tools employed for the computation, three basic ingredients
stand out. The first one is the so-called geodesic medial differential equation already
present in a basic form in [45, pp. 171–174], later on used within a computational
setting in [35]. The second one is the computational description of focal curves [35]
and the third ingredient, is the observation that on a bordered C2-smooth surface as-
sembled from finitely many real analytic surface patches with real analytic boundary
arcs, the medial axis would be topologically a graph [49]. The end points of the lat-
ter graph would be focal points with respect to the surface’s boundary curve [34,49].
Since the distance between the surface boundary curve and the focal curve has local
minima at the end points of the medial axis graph, a tracing method could be imple-
mented starting at those points.
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Fig. 5 Medial axis and Voronoi diagram on 3D Riemannian manifolds.

Combining the computational instruments and observations presented above, it
was possible to develop prototype software that could compute medial sets in fairly
challenging cases of bordered subsurfaces, e.g. spline surfaces or surfaces being C2-
smoothly assembled of real analytic patches [5,22,34,49]. The tools presented above
allow also computing of a Voronoi diagram on a parametric surface [22] provided
that the bisectors involved to describe the Voronoi diagram do not meet the focal
set of one of the two points defining the bisector (see Fig. 4 for an example). For
a more comprehensive survey of the presented research prior to the year 2000, see
also [49].

2.1 Medial Computations Since 2000 during the Years of GRK 615

Since the year 2000, the contributions of of the Welfenlab with respect to medial axis
computations brought significant extensions beyond that what had been achieved
before. This was essentially possible through research works supported by GRK
615.

First, the restriction to two dimensions for the respective computations on geodesic
medial sets and geodesic Voronoi diagrams could be removed. Thus, it was possible
to develop methods that would work in Riemannian worlds of dimension three and
higher and it was possible to present prototypical implementations for the com-
putation of sample cases for medial sets in dimension three. Furthermore, several
examples of geodesic Voronoi diagrams of point sets P in Riemannian manifolds of
dimension three could be obtained [18, 27, 41] as shown in Fig. 5.

All those computations needed some substantial extensions of the methods that
had been developed by the year 2000. For instance, the Jacobi equation had to be
solved in its general form (3) instead of its simpler two dimensional special case
(4). Another significant extension was caused by the problem that finding a geodesic
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joining any two points could not be done any more by a simple shooting method that
one might use in dimension two. The additional degrees of freedom in the dimension
of the space describing the initial directions made it necessary to employ homotopy
methods. For a general introduction to those methods, we refer to [2, 16]. In our
case, the nonlinear equation (6) is embedded into a homotopy

H(s,ϕ ,λ ) = Op(s,ϕ)− c(λ )

where c : [0,1] → M is a curve connecting an arbitrary starting point c(0) with the
point c(1) = q. Assuming (s,ϕ ,λ ) to be a function of an additional parameter t and
differentiating with respect to t we obtain the implicit differential equation

(
∂Op

∂ s

∣∣
∣
∣
∣

∂Op

∂ϕ

∣∣
∣
∣
∣
− c′(λ )

)

· d
dt

⎛

⎝
s(t)
ϕ(t)
λ (t)

⎞

⎠ = 0

that can be used to trace the zero set of H whose intersection with the plane λ = 1
contains the sought solutions. For more details, we refer to [18, 26, 27].

However, all considerations in the years from 1996 to 2007 were focussing on
the simplified case, where shortest paths are unique. In elaborated experiments
it was discovered that the traced solution paths x(t) = (s(t),ϕ(t),λ (t)) satisfying
H(x(t)) = 0 can turn around with respect to λ in points where ∂Op/∂ϕ vanishes,
i.e. in points where the curve c meets the focal curve of p transversally by construc-
tion, see Fig. 6. Therefore if we introduce a generalized homotopy curve c which
contains the point q in its interior, the approach can yield multiple solutions. The
curve c(λ (ϕ)) describes end points of a (continuous) family of geodesics starting
in p whose initial direction continuously depends on an angle ϕ . In case there are
multiple solutions we obtain for different (initial) angles ϕk the same parameter
λ = λ (ϕk) related to geodesics ending up in the same end point c(λ (ϕk)) = c(λ ).

In typical situations as depicted in Fig. 6, the focal curve (red-coloured) separ-
ates regions of the surface where the number of solutions changes. More concretely
we have a unique (geodesic) connection outside of the region bordered by the focal
curve (cyan-coloured), two connections on the border (green-coloured) and three
connections inside (blue-coloured). The right part of Fig. 6 indicates how to collect
different geodesics corresponding to different angular parameters ϕ and intersecting
in the point c(λ ). Since the structure of focal curves shows some variety, a classi-
fication of relevant situations where the number of near by geodesics can be found
precisely is subject of ongoing research. In this context the just described method
appears to be a promising approach for the computation of “near by” (and under
additional assumptions of all) geodesics joining two points p,q ∈ M. Thus the com-
putation of dM(p,q) is feasible in a direct manner with respect to the definition of
dM. Apparently the latter approach has not been described in the respective literat-
ure.
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Fig. 6 Several geodesics.

2.2 Remarks

The discussions and methods presented in the preceding section (and also all the un-
derlying respective research until today) make some simplifying assumptions imply-
ing the omission of crucial difficulties. Those simplifying assumptions were taken
for granted for computations in the two-dimensional surface case or even in the
planar case. Therefore in the latter two-dimensional cases important and difficult
computational problems related to computations regarding medial axis and Voronoi
diagrams in the Riemannian or even in the Euclidean case are still subject of our
ongoing research activities. We illustrate this statement with a few examples:

1. For the computation of Voronoi diagrams, the generating point set was assumed
to be “benign”, meaning that the related medial sets and bisectors would stay
away from the (first) focal sets of their generators.

2. Furthermore, an n-dimensional Riemannian version of the respective Euclidean
“general position” assumption was made for the point set generating the Voronoi
diagram. This means vertices of the respective geodesic Voronoi diagram were
assumed to be centers of uniquely defined geodesic distance spheres contain-
ing exactly n + 1 generator points partial to the point set generating the Voronoi
diagram.

3. The computation of the medial axis close to an end point was usually done by
a fairly crude approximation whenever the angle between intersecting geodesic
normals became very small close to the respective end point of the medial axis.

4. The analysis of the situation where one wants to compute all geodesics joining a
reference point p with points close to the cut locus of p where those geodesics
have already or will soon reach the (first) focal locus of p appears to have never
been done appropriately in a systematical way. The latter situation is crucial for
computing minimal geodesics joining two given points in a complete Riemannian
manifold.
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Fig. 7 Sequence of forging steps from billet to final product.

The last two afore-mentioned issues 3 and 4 also fall within the scope of our current
research projects.

3 Application of 3D-Medial Axis on Metal Forming Simulation

One application of the medial axis was researched in the graduate college 615, using
the medial axis transform as description for the geometry of forging dies in hot drop
forging. This serves as basis for rapid backwards simulation of material flow.

In hot metal drop forging, a heated semi-finished part is formed by pressing two
forging dies which contain the negative final shape. If the design of the forging
dies or the layout of the process is incorrect, the quality of the final product will be
severely reduced.

Since the design of the tools is a very cost-intensive part of forging, computer
aided techniques are used to reduce design time and to decrease the number of iter-
ations until the final layout is reached. Usually, a number of pre-forms are needed in
order to achieve the final complex shape from the initial simple shape with optimal
properties and within a geometrical tolerance.

The prediction of preforms from the final product is what we call inverse
or “backward” simulation. There exist several approaches, based on the Finite-
Element-Method and backward tracking of solutions [9, 21] or upper boundary
methods [12]. These algorithms have quite severe drawbacks, since they have to
be fitted closely to the problem at hand and have to our knowledge not been utilized
in practical applications.

The medial axis approach is based on experimental observations and element-
ary plasticity theory, see Mathieu et al. [23]. In drop forging experiments, Mathieu
noticed that the material flow followed specific paths, which can be described as
medial axis of the die gap. Based on Mathieu’s observations, algorithms were de-
veloped which simulate material transport along these displacement paths [6, 25].
It is important to note that these simulations only provide an approximation to the
velocity field of the material and the filling of the forging form. They will not yield
local stresses, strains or temperature, and do not allow the compuation of hardening
phenomena. Thus, they can provide only limited assistance for the simulation of the
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forging process. Nevertheless, this approach is a good basis for backwards simula-
tion where a prediction of the preform is needed as implemented by Wienstroer for
the 2D case [42]. The velocity field of the material is not computed explicitly, rather
an iterative method based on flow resistance along the displacement paths is used to
determine the distribution of material between the cells.

Computation of the Medial Axis for CAD Objects

Forging dies are usually described by surface models constructed in CAD programs,
but these programs do not offer a medial axis (MA) representation. Since there exist
no production ready programs that offer the construction of the medial axis from
(boundary) surfaces, it was necessary to develop a stable tool to this end. Our de-
mands on the algorithm were that it should be fast and return a surface (mesh) rep-
resentation of the MA. Speed is important because the backward simulation should
give the user a first preform which is afterwards analysed and corrected. The simu-
lation will iterate several time steps and in each the MA has to be computed again.
Therefore the computation of the MA shoul be fast. The material transport in the
simulation will take place on the MA, so it is crucial that its connection informa-
tion is obtained. We chose to look for algorithms that take triangle mesh surfaces as
input, since the formats of surface representations in CAD tools differ very much,
but every system can export triangle meshes, giving us a wide range of possible
applications.

Research on existing algorithms showed, that these can be classified into three
categories: discrete, direct and indirect methods. Discrete methods discretize the
surrounding space of the reference surface using, e.g., octrees or voxels, and then
implement a discrete grassfire algorithm (i.e. a thinning operation) to determine a
discrete representation of the MA. These methods do not provide the connectivity
information and were therefore discarded.

In three dimensions, the MA is composed of medial faces (i.e. bordered surface
patches) connected by medial seams (i.e. curve elements). Direct methods setup
generalized Voronoi diagrams between elements of the reference surface (triangles)
and intersect these to get the medial seams [13,40]. Their runtime is O(n2) which is
bad for large input sets.

The indirect approach approximates the Medial Axis by filtering or pruning the
Voronoi diagram of sample points on the reference surface [4, 14]. We have imple-
mented such a strategy, robustly computing a 3D Delaunay tesselation of a sampled
point set. Then, we filter the dual Voronoi diagram using a heuristic based on the
assumption that there should exist a homeomorphism between the reference surface
and the surface Delaunay triangles. Several steps have to be performed prior to the
tesselation used to transform the given tool geometry to a boundary representation of
the die gap and to analyze its features, e.g., detecting sharp edges. Finally a meshed
medial surface of the die gap is computed as shown in Fig. 8.

225



F.-E. Wolter et al.

Fig. 8 Forging dies and approximated medial axis of the die gap.

To this end, a fast data structure for the Delaunay triangulation has been imple-
mented by Obydenna [29] and used by Algaier [1] to rapidly recompute the Voronoi
diagram after each time step in which the dies move.

Connection between Medial Set and Material Flow

We could show that for viscous Bingham fluids flowing in a completely filled pipe,
the maxima of material flow speed will lie on the Medial Axis of the pipe boundary
[10]. Hot metal in forging can be modeled as a very viscous Bingham fluid.

Simulation Scheme

With the development of the Medial Axis computation software, the fundament of
the simulation has been laid. Important parts of the framework, such as the partition
of the die gap and graph-representation of the Medial Axis are already in place. The
next steps will be the implementation of the geometric resistance model and the
material transport algorithm.

4 Spectrum of Eigenvalues of the Laplace–Beltrami Operator

As pointed out in the introduction, it is known from theoretical research, that a sub-
stantial amount of geometric and topological information on a Riemannian Manifold
M is contained in the spectrum of eigenvalues of its associated Laplacian. To become
more concrete in the following discussion, let M denote a Riemannian manifold and
let ∆ denote its associated Laplacian. In case M is a subdomain of euclidean space
equipped with cartesian coordinates, ∆ is the well-known Laplace-Operator given
by ∆ = ∑i ∂ii, assigning to a function the trace of the Hessian of that function. In
the more general Riemannian setting, this operator becomes the Laplace–Beltrami-
Operator, whose action on a function f can be defined using the metric tensor g of
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M with respect to a local chart via

∆ f := div grad f :=
1√

detg ∑
i, j

∂i(g
i j
√

detg∂ j f )

The spectrum of M consists of all scalars λ that satisfy the eigenvalue equation

−∆ f = λ f (7)

for a non-zero function f defined on the manifold, subject to appropriate boundary
conditions of the Dirichlet or Neumann type. From the theory of compact elliptic
operators it is known, that there is a countably infinite number of non-negative ei-
genvalues λ1 ≤ λ2 ≤ λ3 ≤ . . . accumulating at infinity. Each eigenvalue corresponds
to a finite dimensional space of eigenfunctions.

Among the geometrical information determined by the spectrum we have the
dimension and the volume of M, the volume of its boundary, the scalar curvature
integral over M, the mean curvature integral over its boundary and the Euler charac-
teristic of M in case of a two-dimensional surface or a planar domain with smooth
boundary. This information can be extracted from the asymptotic expansion of the
so-called heat-trace function

Z(t) =
∞

∑
i=1

exp(−λit) = (4πt)−dim M/2

(
n

∑
i=0

cit
i/2 + o(t(n+1)/2)

)

for t → O+,

where, according to a theorem by McKean and Singer [24], the first few coefficients
are given by

c0 = vol M, c1 = −
√

π
2

vol(∂M) and c2 =
1
3

∫

M
K − 1

6

∫

B
J (8)

where K is the scalar curvature of M and J is the mean curvature of the boundary of
M. In case the dimension of M is two, then K coincides with the Gaussian curvature
of M.

The spectrum is invariant under isometric transformations of M and changes con-
tinuously as the manifold is continuously deformed in a non-isometric way. There-
fore the spectrum can be considered to be characteristic for the intrinsic shape of the
underlying manifold. However it is also well-known that the spectrum does not com-
pletely determine the underlying manifold, as exemplified by the existence of pairs
of isospectral but non-isometric manifolds. One such a pair in the case of planar do-
mains was given by Gordon in [17] and is depicted in Fig. 9. An interesting property
of these examples is, that isospectrality still holds with respect to the eigenvalues of
the three dimensional Laplace operator in case the domains are extruded to three
dimensional prisms. However, the boundaries of the prisms have different spectra
with respect to their respective two-dimensional Laplace–Beltrami operators.

Leaving aside the rare phenomenon of isospectrality, the above-mentioned the-
oretical properties of the Laplace spectrum make it suitable for the construction of
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Fig. 9 Isospectral domains.

feature vectors that can be used as fingerprints of objects, as long as the objects un-
der consideration can be represented or at least modeled as Riemannian manifolds.
The above-mentioned fingerprint can be constructed from a (finite) initial part of the
spectrum of the respective manifold and finds a natural application in the context of
efficient retrieval of similar objects in large databases.

4.1 Laplace Spectra as Shape DNA for Surfaces and Solids

The two-dimensional surfaces and three-dimensional solids commonly encountered
in CAD/CAE applications are instances of Riemannian manifolds with with an in-
trinsic metric that is naturally induced by their embedding in R3. Extending the
work on mesh-based discrete Laplacians, the Laplace–Beltrami Operator can also
be applied to free-form surfaces and solids. A collection of its first few smallest ei-
genvalues can be used as feature vectors that are invariant with respect to rotation
and translation and any reparametrization parametrization of the object. Further-
more, it is known that a scaling transformation by the factor a results in scaled
eigenvalues by the factor 1/a2. Therefore, by normalizing the eigenvalues, shape
can be compared regardless of the objects scale.

By transforming the eigenvalue problem (7) into a variational formulation, the
Finite Element Method can be employed in order to obtain on modern hardware
within seconds an accurate set of eigenvalues for a fairly large variety of reasonably
detailed objects. If the given surface or solid has a boundary, generally the Dirichlet
boundary condition is applied. If objects with small holes or missing triangles are
to be compared, the Neumann boundary condition can be used instead, because
the unwanted holes appear to change the Neumann spectrum not as much as in the
Dirichlet case.

In order to “show” how the Shape-DNA can help to distinguish many different
surfaces the latter technique was applied to a database of 1000 randomly generated
B-Spline surface patches [36]. For these patches the first 11 eigenvalues were calcu-
lated and stored with the shapes. By using the Euclidean distance of the normalized
11-dimensional vectors of eigenvalues, each patch could be uniquely identified even
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Fig. 10 Clustering of eigenvalues.

with deliberately different (not optimal) meshes introducing distinct calculation er-
rors. Still, these inaccurate eigenvalues yielded distances of less than 0.02 between
the original and the modified patch. Furthermore, from all the 500,000 possible pairs
of different patches only 300 had a distance of less than 0.3 to each other, none was
closer than 0.15. This confirmed the conjecture that the Laplace–Beltrami method
is sensitive enough to be used for identifying patches even with reduced capacities
for calculation (since only the first 11 eigenvalues were used).

In another experiment, the spectra of different objects were computed and multi-
dimensional scaling was employed to obtain the two-dimensional projection in
Fig. 10 which shows how similar objects cluster according to their eigenvalues.
Of course projecting the high dimensional feature vectors to a very low dimensional
space means a massive loss of information, resulting in the formation of additional
clusters, and thus cannot serve more than purposes of illustration. For practical ap-
plications one should work with more than two dimensions.

Furthermore [36] contains some results with respect to the mutual independence
of the eigenvalues and on the rapid convergence of the heat trace series. Especially
the latter property made it possible to extract the volume, the boundary length and
the Euler characteristic of a shape from its computed eigenvalues with high nu-
merical accuracy. This numerical approach was novel and confirmed the theoretical
results stated in (8).

As a biomedical application it was shown later in [28, 38, 39] that Laplace–
Beltrami spectra posses the discriminatory power to distinguish two populations
of female persons via the shapes of their respective caudate nuclei. In this biomed-
ical application one population would contain normal control subjects while the
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order. The caudate nucleus of a person is a subcortical gray matter structure of the
brain, involved in memory function, emotion processing, and learning.

4.2 Laplace Spectra as Image DNA

In order to use Laplace–Beltrami eigenvalues as fingerprints for images, these im-
ages have to be modeled as Riemannian manifolds. For example, a gray scale image
can be represented as a surface defined by the graph of a height function being
the gray scale intensity function of the image while a color image can be under-
stood as a two-dimensional surface in a five-dimensional Euclidean space whose
coordinates include the intensity parameters of the red, green, blue values assigned
to any (x,y) pixel of the image. It is possible as well to understand other even higher
dimensional signals as height functions and therefore as manifolds, whose Laplace–
Beltrami spectra can be computed. These topics were studied by Peinecke during
his PhD research.

Another approach pursued by Peinecke was an extension of the classical Lapla-
cian eigenvalue problem (7) to the form

−∆ f = λ ρ f

in which the gray-value information of an image is encoded in a mass-density-
function ρ instead of the structure of the representing manifold [31].

Although using the discrete Laplace operator or more generally using eigenval-
ues of different operators and matrices derived from this operator is a well known
and established technique in the community of shape and image recognition, typical
applications employ discrete forms of the Laplacian directly instead of making use
of the underlying continuous operator. An advantage of the continuum point of view
is the independence of the particular discretization employed in the computation, as
the results are stable under mesh refinement or change of image resolution.

In a series of example calculations, Peinecke observed that the discrete graph-
based Laplace–Kirchhoff and the Laplace–Beltrami operator perform similarly in
terms of run time. However, while the Laplace–Kirchhoff operator is more easily
implemented, the Laplace–Beltrami variants open up the possibility to use a coarser
mesh and thus save computation time. This observation fits into the general finding
that for surfaces, images and solids Laplace spectra derived from a discrete model
(instead of using the underlying continuous operator) typically have the disadvant-
age that they make it difficult to decide if two objects are similar when using spectra
obtained from different discretizations and different resolutions. In the continuous
differential geometric (parametrization invariant) setting the afore-mentioned de-
cision is possible under resonable assumptions for images, surfaces, solids with or
without boundary. Indeed for the latter objects Laplace spectra derived within a
continuous (parametrization invariant) setting provide the gold standard and spectra
obtained within a merely discrete combinatorial point set setting must be shown to
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Fig. 11 Transformed versions of a test image.

Fig. 12 Image classification results according to fingerprint distance.

converge to the spectrum of the respective continuous operator [37, 51]. The latter
requirement typically causes problems for operators (and their spectra) in case the
operators are obtained within a merely discrete combinatorial setting [37,51]. In the
discussion of computational models for the computation of the Laplace operator and
its eigenvalues one should bear in mind that there is only one Laplace operator of a
function and this Laplace operator is the divergence of the gradient of the respective
function defining the gold standard.

To test the robustness of the computed eigenvalues, a collection of images was
considered and augmented with images differing in scale and contrast as shown ex-
emplary in Fig. 11. For each image in the collection fingerprints were calculated us-
ing the Laplace–Beltrami operator obtained from the surface defined by the graph of
the grey value function using finite elements. Afterwards the fingerprints were com-
pared using Euclidean distances. A reliability of about 96% was obtained, meaning
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that in 96% of the cases it was possible to match an image with transformed cop-
ies of itself. For a more detailed discussion of the implementation and the results,
we refer the reader to [30, 32] With respect to color images, the proposed methods
were shown to be especially useful in the presence of rotations or color rotations,
changes of contrast and scale, and combinations of all these operations, since the
underlying calculations based on the continuous Laplace–Beltrami operator are in-
variant against such transformations. It was shown, that the proposed method uses
substantially less information than established techniques for discriminating collec-
tions of images while maintaining a high reliability. This is especially useful for
data bases of images where high dimensional searches are very cost intensive, see
for example [7, 8].

5 Conclusions and Prospects

This survey chapter reviewed the contributions of the Welfenlab to GRK 615. All
those contributions could essentially be viewed as being partial to a field that one
might call “Computational Differential Geometry”. This description would be jus-
tified because the respective research essentially presents analysis, discussion and
applications of methods that would result in numerical computations of entities that
mostly were originally introduced within the classical framework of differential geo-
metry avoiding numerical computations.

The contributions in this chapter are limited to a specific selection of subjects
including Cut Locus, medial axis, geodesics, focal sets, conjugate loci, geodesic
Voronoi diagrams, Laplace Spectra of surfaces, solids and images. Despite this lim-
itation the contributions presented in this chapter cover important highlights of re-
search the first author has been involved in since more than 30 years. Many of the
mentioned geometric entities that 30 years ago would only exist as mental objects
(resulting from mathematical definitions) can nowadays be efficiently numerically
computed via works outlined in this chapter. Although those numerical computa-
tions are now to some extent possible in a number of relevant situations one should
mention that many if not most difficult questions still remain open, see e.g. the re-
mark at the end of Section 2. Certainly the latter point is one of the reasons why
various research topics outlined in this chapter (decribed by the words presented in
italics above) being – 20 years ago – initially pursued by a small number of computa-
tional researchers only (including computational geometers, computer scientists and
engineers) nowadays constitute a substantial part of main stream research in the re-
spective areas. Overall it has turned out that areas that say 25 years ago were viewed
at as being sort of exotic in the respective communities – including researchers from
computational geometry and computer graphics – mean while are moving into the
center of attention in the respective communities. There are several reasons for this
development. One is that the area of computational geometry is becoming more and
more sophisticated. This holds because the respective researchers are realizing that
elementary methods are tentatively exhausted and they are discovering the power
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of advanced mathematical tools contained in the theoretical achievements of local
and global differential geometry. The other equally or perhaps even more important
reason for this development is that sophisticated tools from differential geometry
can help to make important progress for the central questions of geometric model-
ing, computer graphics and image processing. Those central poblems are Shape and
Image Cognition and (Re)-Construction and Compression [47]. The application of
tools of differential geometry to the afore-mentioned subjects will be the topic of an
upcoming paper expanding the referenced keynote lecture [47].
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11. G. Böttcher. Medial axis and haptics. Diplomarbeit, Leibniz Universität Hannover, October
2004.

12. A.N. Bramley. UBET and TEUBA: Fast methods for forging simulation and preform design.
Journal of Materials Processing, 116, 2001.

13. T. Culver. Computing the medial axis of a polyhedron reliably and efficiently. PhD Thesis,
Department of Computer Science, University of North Carolina, Chapel Hill, 2000.

14. T.K. Dey and W. Zhao. Approximating the medial axis from the Voronoi diagram with a
convergence guarantee. Algorithmica, 38:179–200, 2004.

15. M.P. do Carmo. Riemannian Geometry. Birkhäuser, Boston, 1992.
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