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a b s t r a c t

The well-known Laplace–Beltrami operator, established as a basic tool in shape processing, builds on a
long history of mathematical investigations that have induced several numerical models for computa-
tional purposes. However, the Laplace–Beltrami operator is only one special case of many possible
generalizations that have been researched theoretically. Thereby it is natural to supplement some of
those extensions with concrete computational frameworks. In this work we study a particularly
interesting class of extended Laplacians acting on sections of flat line bundles over compact Riemannian
manifolds. Numerical computations for these operators have recently been accomplished on two-
dimensional surfaces. Using the notions of line bundles and differential forms, we follow up on that work
giving a more general theoretical and computational account of the underlying ideas and their
relationships. Building on this we describe how the modified Laplacians and the corresponding
computations can be extended to three-dimensional Riemannian manifolds, yielding a method that is
able to deal robustly with volumetric objects of intricate shape and topology. We investigate and
visualize the two-dimensional zero sets of the first eigenfunctions of the modified Laplacians, yielding an
approach for constructing characteristic well-behaving, particularly robust homology generators invar-
iant under isometric deformation. The latter include nicely embedded Seifert surfaces and their non-
orientable counterparts for knot complements.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction and related work

From a physics and engineering perspective the well-known
Laplacian acting on functions that are defined over some space M
is essential for modeling common phenomena such as heat
diffusion and wave propagation on M. In the corresponding
mathematical models it often arises from variational methods
applied to some energy minimization principle. Its properties
make it a versatile tool for obtaining well-behaved functions or
studying the underlying space.

The physical relevance and mathematical properties of the
Laplacian have motivated several generalizations in various direc-
tions, such as the extension from scalar functions to vector or
tensor fields. For example the vector Laplacian is relevant in the
study of electromagnetics whereas analogous differential opera-
tors are used in linear elasticity. Furthermore, by going from
Euclidean spaces to curved Riemannian spaces, the Laplace–
Beltrami operator acting on functions and the Hodge–de Rham
Laplacian acting on differential forms provide natural
ll rights reserved.
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generalizations of the Laplacian or vector Laplacian, respectively.
These and other more abstract generalizations are studied in a
branch of mathematics known as spectral geometry.

Although many fundamental theoretical questions are still
unsolved, the field of spectral geometry has established remark-
able results that show the Laplacians to capture various geometric
and topological information about the underlying space. However,
most of these results are not directly amenable to computational
methods and are rather given in terms of asymptotic relations or
curvature-dependent bounds on the eigenvalues, see e.g. [1].
There is a large gap between the abstract constructions in theory
and concrete computational methods applicable to given shapes.
In particular, the transition from two to three dimensions is more
challenging in practice than indicated by the general theory.

With the increasing availability of computing power, the
Laplace operator has attracted considerable interest in computa-
tional geometry and shape processing, driven by the desire to
exploit it for practical algorithms and based on a variety of
discretizations, see e.g. [2–6]. Among applications employing
numerically computed Laplacian invariants are shape and image
retrieval using spectral prefixes [7–9] based on early research
[10,11] and patented in [12] with a retrospective discussed in [13].
The Laplacian has also been successfully used in signal processing
operations [14], surface remeshing [15], parametrization [16–18],
mesh deformation [19], descriptors for shape matching [20–24],
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segmentation and registration [25] and statistical and topological
shape analysis [26–28], just to mention a few. A survey of some of
these and other applications can be found in [29].

The route taken in most of these applications is to start directly
with a discretization defined in terms of concrete equations that are
valid for a point cloud, graph, or mesh representation. Therefore, it
is common to discuss the Laplace–Beltrami operator in a specific
discretization, most notably as the so-called Cotangent–Laplacian
[3]. However, comparatively few computational attempts have gone
beyond modeling the classical Laplace–Beltrami operator by con-
sidering for example the spectrum of operators derived from
different energy functionals [30,31], the Hodge–de Rham Laplacian
[32] or quaternionic-valued operators [33].

The contribution of this paper fits into dealing with a class of
operators going beyond the usual Laplace–Beltrami operator. We
extend the work in [34,35], proposing a general method to explicitly
construct a flat line bundle over a compact three-dimensional
manifold M represented by a simplicial complex K and to perform
a spectral decomposition for the associated connection Laplacian.
Note that the general concept of connection Laplacians has recently
also been investigated in the context of so-called vector diffusion
maps for analyzing point-based data sets, see [36].

The case where M is equipped with non-Euclidean geometry
and the trivial connection has been an object of study within
physics, see for example [37,38] considering two-dimensional
hyperbolic surfaces. Specific constantly curved three-dimensional
settings have recently attracted attention, too, see e.g. [39]. Our
method applies in these settings as well as in the general
arbitrarily curved case.

As we will use knot complements to construct three-dimen-
sional bounded manifolds, some of our result relate to so-called
Seifert surfaces [40]. While these are topologically easily con-
structed, obtaining nice geometrical embeddings is challenging,
see [41]. This topic has also been researched in the context of
electromagnetic computations to deal with the multi-valuedness of
scalar potentials by introducing cuts, see the work of Kotiuga
[42,60]. As we will illustrate, our method yields well-behaved
embeddings of Seifert surfaces or their non-orientable counterparts.
2. Contribution

Combining ideas from spectral geometry and algebraic topol-
ogy, the aim of this paper is to investigate the so-called connection
Laplacians on flat line bundles from a computational point of view.
These operators generalize the well-known Laplace–Beltrami
operator which has become ubiquitous in shape processing. One
can interpret most of those Laplacians as perturbations of the
ordinary Laplacian dnd by a first-order differential expression,
namely

Δωf ¼ dn df þ 2〈df ;ω〉þ ðdnωþ jωj2Þf ð1Þ
where ω is an imaginary-valued closed differential one-form.
Employing the notion of a connection, Δω is often called the
Bochner or connection Laplacian associated to the flat connection
dω ¼ dþ ω. One way of understanding connection Laplacians is in
terms of introducing certain sign flips or phase shifts across
embedded hypersurfaces representing closed chains, i.e. so-called
cycles within relative homology. Focusing on two-dimensional
manifolds, an approach for obtaining the spectral decomposition
of such Laplacians has been recently introduced in [34,35].

We follow up and extend those approaches by describing a
general method that is able to deal with three-dimensional
volumetric objects of complex topology. While in two dimensions
it is comparatively easy to find a suitable 1-cycle resembling a
curve and to perform the flips/phase shifts across this curve, the
corresponding situation in three dimensions is more difficult.
Obtaining suitable generators in this case requires more sophisti-
cated algorithms which typically produce quite cluttered outputs.
These generators can exhibit complex self-intersections or even be
non-orientable, thereby obscuring how and where precisely to
apply the required sign flips or phase shifts consistently.

In this paper we investigate topologically complex three-
dimensional manifolds M by computing the spectral decomposi-
tions of the generalized Laplacians. Our approach applies to
compact manifolds that may be unbordered and even equipped
with a non-Euclidean geometry.

We describe how to overcome the above-mentioned difficulties
by constructing complex line bundles over simplicial complexes
representing M based on a formal approach. Following the classical
definition of a bundle we define an atlas and associated bundle
transition functions in terms of a discrete one-form on the dual
mesh or — in other words — in terms of a discrete flat connection
using the terminology from [43]. We show that the resulting atlas is
well-defined in case the one-form is closed. This is necessary to
ensure the correctness of the computations building upon this atlas.

As an application we compute smooth well-behaving embed-
dings of two-dimensional homology generators for any considered
homology class. Those are invariant under isometric transforma-
tions and robust to noise and discretization.

Outline: In Sections 3–5 we discuss essential mathematical
preliminaries in the smooth and discrete settings. Sections 6–8
describe the core of our approach. Section 9 summarizes the
algorithm used for obtaining the results discussed in Section 10.
3. Basics

An appropriate mathematical setting for our discussion is
provided by differential geometry, see e.g. [44], starting with a
given Riemannian manifold M, possibly with boundary. For shape
processing this manifold is typically, but not necessarily, embedded
in an Euclidean space and can be pictured as a curve, surface, or
volume. A differentiable manifold is usually defined in terms of an
atlas, being a collection of open sets Ui covering M, together with
chart homeomorphisms Ui-Rn that induce differentiable chart
transitions. The metric tensor, denoted by g or gij in local coordi-
nates, allows for measuring metric properties such as lengths,
angles and volumes on M. This tensor can be assumed to be given
a-priori or to be induced by the embedding.

Commonly, vector bundles are introduced to equip the mani-
fold with additional structure, see e.g. [44,45]. Intuitively, a rank k
vector bundle E over a manifold M is obtained by assigning to each
point p∈M a k-dimensional vector space Ep in a continuous way.
The vector space Ep is called fiber over p. Vector bundles of rank
one are called line bundles. The prototypical example of a vector
bundle is the tangent bundle TM which is the collection of all
tangent spaces of M. Its dual is the cotangent bundle TnM.
Applying k times the exterior product to TnM one obtains the
bundles ∧kTnM. A section of a bundle E is a differentiable map s :
M-E with the property sðpÞ∈Ep for all p. The space of sections of E
is denoted by ΓðEÞ. These constructions are quite natural and
familiar as for example ΓðTMÞ is the space of vector fields and
Γð∧kTnMÞ, usually denoted by ΩkðMÞ, is the space of differential k-
forms. The space of complex-valued functions or differential zero-
forms on M can also be considered as the space of sections of the
trivial line bundle M � C.

The most important operation on differential forms is the
exterior derivative d : Ωk-Ωkþ1. Forms in the kernel of d are
called closed, those in the image of d are called exact. Since d2¼0,
the exterior derivative gives rise to the de Rham cohomology
groups Hk

dRðMÞ as the quotient groups of closed forms modulo
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Fig. 1. Illustration of parallel transport. (a) Smooth case. (b) Discrete case.
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exact forms. Two forms are said to be co-homologous if their
difference is exact. Stokes theorem

R
M dα¼ R

∂Mα relates the inte-
gral of a k-form over a k-dimensional chain to an integral over its
ðk−1Þ boundary chain ∂M.

Assuming a manifold M to be represented appropriately by a
simplicial complex K, chains are defined to be formal linear
combinations of simplices in K and a boundary operator ∂ is
defined, satisfying ∂2 ¼ 0. Thus it gives rise to the (simplicial)
homology groups Hk(M,R) by calling two chains homologous if
their difference forms the boundary of a higher-dimensional chain.
Cohomology is introduced in a similar fashion, giving rise to the
cohomology groups Hk(M,R). It turns out that these groups are
isomorphic to the de Rham cohomology groups, establishing a link
between global analysis and topology. For an introduction to
homology theory, we refer the interested reader to the vast
literature on algebraic topology, and in particular [46,45]. See also
[47,48] for presentations especially tailored to geometry proces-
sing applications.

The metric tensor induces inner products ð�; �Þ on the spaces of
sections of the various bundles mentioned above and therefore the
adjoints dn : Ωk-Ωk−1, often also called co-differentials, satisfying
the important relation ðdα; βÞ ¼ ðα; dnβÞ for all α; β. With these
preliminaries we have the Laplace–Beltrami operator Δ : Ω0-Ω0,
defined by Δ¼ dnd.
4. Connections and holonomy

Generally a connection ∇ on a vector bundle E is a linear
differential operator that maps sections of E to E-valued one-
forms, i.e. a map ∇ : ΓðEÞ-ΓðE⊗TnMÞ satisfying the Leibniz rule

∇ðfsÞ ¼ s⊗df þ f∇; s f∈C∞ðMÞ; s∈ΓðEÞ:
An intuitive approach to connections can be given in terms of

parallel transport and holonomy, see e.g. [45]. Note that we are not
necessarily thinking of the tangent bundle and the canonical
metric-induced Levi–Civita connection at this point. Rather, we
focus on the connection dω ¼ dþ ω for some one-form ω in the
trivial line bundle E¼M � C. The parallel transport of an initial
vector f 0∈Ep along a curve γ : ½0;1�-M starting in γð0Þ ¼ p is
defined by solving the differential equation ðdωf Þð_γ Þ ¼ 0 or more
explicitly

_f ðtÞ þ ωð_γ ðtÞÞf ðtÞ ¼ 0

for a vector field f(t) along γ satisfying the initial condition f(0)¼ f0.
The vector f1¼ f(1) at q¼ γð1Þ is said to be the parallel transport of
f0 along γ. The parallel transported vectors at q are related to the
initial vectors at p by a linear map Ep-Eq. See Fig. 1a for an
illustration in the smooth setting, where we have depicted the
complex numbers with their a phase and amplitude as arrows
with a certain direction and length respectively. In case the one-
form ω is restricted to have imaginary values only, the amplitude is
invariant under parallel transport.

Note that the concept of a connection can be discretized in the
spirit of discrete exterior calculus as discussed for example in [43]:
given a simplicial complex K of dimension m and a curve through
K, one can imagine the effect of parallel transport to be concen-
trated at the transitions between adjacent m-simplices. This
amounts to viewing the smooth one-form ω as a discrete one-
form on the dual mesh nK , see Fig. 1b.

If γ is closed, then both f0 and f1 are based at the same point p
and the linear map mentioned above is actually an endomorphism
on Ep. This map is called the holonomy of the connection dω
around the curve γ based at p. If ω is closed, i.e. if dω¼ 0, the
connection is called flat. For flat connections, homologous loops
induce the same holonomy. In this case the holonomy of dω around
contractible loops is the identity, while for non-contractible loops
this is not necessarily the case. If ω is not only closed but also
exact, i.e. if ω¼ dξ for some function ξ, then the holonomy around
any loop is the identity. It is precisely the case of flat connections
which have trivial local holonomy but non-trivial global holonomy
that is the subject of interest we are addressing in this paper.
5. Vector bundles

Assume M to be a given manifold covered by a set of charts
fU;V ;…g. Let E be a complex line bundle over M. For each chart U
the set of all fibers Ep, p∈U is assumed to be homeomorphic to the
Cartesian product U � C and one speaks of a trivialization of E over
U, which we will denote by EU≃U � C. It is well-known that a
bundle on M can be constructed completely by choosing a
collection of bundle transition functions, one for each pair of
overlapping charts. That is, given any two charts U;V⊂M with
U∩V≠0 one prescribes a continuous function ψ ðU;VÞ : U∩V-Cn ¼
C\f0g. If EU≃U � C and EV≃V � C are two trivializations of E and
X∈Ep (where p∈U∩V) is some vector represented by the pair
ðp; xUÞ∈U � C and ðp; xV Þ∈V � C, then xU and xV are related by

xU ¼ ψ ðU;VÞðpÞxV :
We denote this relationship by the diagram V⟶ψðU;V ÞU. The
bundle transition functions have to satisfy the so-called co-cycle
condition

ψðU;VÞ ψðV ;WÞ ¼ ψðU;WÞ
for any three overlapping charts U,V,W in order to make the
construction well-defined. A collection of transition functions
ψ ¼ fψðU;VÞg satisfying these conditions is a Cěch 1-cocycle. In
short we can say that a Cěch 1-cocycle completely determines the
vector bundle.

Assume now that E is a complex line bundle over M. A
connection in E can be given by a collection of differential one-
forms ωU , one for each chart U in an atlas of M, subject to the
following transition condition, cf. [45]: if U;V are overlapping
charts, then

ωU ¼ ψðV ;UÞ−1 ωVψðV ;UÞ þ dψðU;V Þ ¼ωV þ dψðU;VÞ:
If all bundle transition functions are constant, then the above
condition for the connection one-forms simplifies to ωU ¼ ωV . In
this case, setting ωU ¼ 0 for all U in the atlas of M defines a valid
connection in E. This connection is flat, yet it can have non-trivial
holonomy that is encoded in the bundle transition functions. To
see this, imagine a loop γðtÞ covered by a sequence of charts
U1;U2;…;Un and starting and ending in a point p. Beginning with
a vector f∈Ep the parallel transport can be computed in terms of
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the local trivializations as follows: represent f(t) over Ui by a
complex-valued function fi(t). Since ωUi

¼ 0 it follows that fi(t) is in
fact constant. A chart transition Ui-Uiþ1 induces the transition
from fi to f iþ1 by f iþ1 ¼ ψðUiþ1;UiÞf i. After a full trip around γ as we
arrive at Un ¼U1, the vector fn differs from f1 by the complex
number given by the product ∏iψðUiþ1;UiÞ which is in general not
1∈C.
6. Construction of a line bundle

Assume the m-dimensional manifold M to be topologically
described by a simplicial complex K. Let Kj, 0≤ j≤m, be the set of
j-simplices in K. To each simplex s∈Kj we consider the neighbor-
hood Us, consisting of all m-simplices in K that are incident to s.
Fig. 2a shows how these domains can look like for j¼ 0;…;m in
two and three dimensions. We can think of each Us as a chart ofM.
The union of all those charts covers M to yield an atlas of M, which
in the following will be used to construct a line bundle. For
example, Fig. 2b shows part of a two-dimensional simplicial
decomposition of a manifold M with two charts Us and Uμ

corresponding to vertices s; μ. These two charts overlap in the
chart Usμ where sμ is the 1-simplex joining s and μ.

Now assume that ω is a given Cn-valued closed discrete one-
form on the dual complex nK . It assigns to each dual edge nη, η
being an ðm−1Þ-simplex in K, a value ωðnηÞ∈Cn. We can define
bundle transition functions as follows: for a fixed j-simplex s, let
τ0;…; τn be the m-simplices incident to s. For two neighboring τi; τj
let ηij be their common ðm−1Þ simplex. We first define the bundle-
transition functions between Us and Uτi for each i by imposing the
conditions

ψðUτi ;UsÞ ¼ ωðnηijÞψðUτj ;UsÞ:

In the following we will prove that the above conditions can be
fulfilled, since ω is closed by definition. There is one degree of
freedom that is fixed by imposing e.g. ψðUτ0 ;UsÞ ¼ 1. Thus, we
effectively construct locally a discrete dual 0-form as a potential
for ω.
σ μ

τ2

τ1

τ3
τ4

τ5

τ0

∗η43

∗η05

∗η21

∗η32

∗η54
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Fig. 2. Constructing a discrete vector bundle. (a) Charts in 2D and 3D. (b) Two
overlapping charts.
Proof. In order to see that ψðUτ;UsÞ is well-defined, consider the
two-dimensional case m¼2 first. If dim s¼ 2, then Uτ ¼Us is the
only triangle incident to Us and there is nothing to check. If
dim s¼ 1, there are at most two triangles incident to s and at most
one condition, which can be obviously satisfied. The remaining
case of s being a vertex is the only non-trivial case. In this case we
have a whole triangle fan with s in its center and only half of a fan
if s is on the boundary. Starting by setting ψðUτ0 ;UsÞ ¼ 1 for an
initial triangle τ0 in the fan, we can visit its neighbor τ1 and
determine ψðUτ1 ;UsÞ uniquely. Continuing in the same direction,
we visit the neighbor τ2 of τ1 and determine ψðUτ2 ;UsÞ uniquely.
After a full trip, we arrive back at τ0 and need to check that no
conflict arises for the value of ψðUτ0 ;UsÞ.However, this follows
directly from ω being closed, i.e. from the vanishing holonomy of ω
around s.
In the three-dimensional setting m¼3, the cases dim s∈f3;2;1g

are similar to those discussed above, since we have exactly one
tetrahedron incident to itself, at most two tetrahedra incident to a
triangle, or at most a cycle of tetrahedra incident to an edge,
respectively. The remaining case dim s¼ 0 amounts to a ball (or
half ball) of tetrahedra incident to the vertex s. These tetrahedra are
in one-to-one correspondence with triangles on the surface of the
(half-)ball. Every condition between two adjacent tetrahedra can be
viewed as a condition between their associated adjacent triangles.
Therefore, ω induces a discrete one-form ~ω on the dual mesh of the
surface triangulation. The problem of finding a valid assignment
τ↦ψðUτ ;UsÞ amounts to determining a discrete dual 0-form ~f on the
aforementioned triangulated (hemi-)sphere S which satisfies
d~f ¼ ~ω. This problem has a solution, since S is simply-connected.
Moreover, the solution is unique up to a constant. □

Having defined the transition functions between charts Us and
Uτ for j-simplices s and m-simplices τ, we can proceed to define
the transition functions between the charts associated to two
arbitrary simplices. Thus, let s; μ be two simplices such that the
overlap of Us and Uμ contains the m-simplex Uτ . We obtain the
following diagram:

and the cocycle-condition suggests to define

ψðUμ;UsÞ ¼ ψðUτ ;UμÞ−1ψðUτ;UsÞ:
We have to prove that this is well-defined, i.e. independent of the
simplex τ used in the construction.

Proof. Let s and μ be two simplices in K with Us∩Uμ≠∅. For Uτ ,
τ∈K to be contained in Us∩Uμ, we must have τ¼ s∪μ∪κ for some κ
being disjoint from μ and s (the simplices in the last equation are
to be understood in the sense of sets of vertices with ∪ being the
usual union of sets.). Let now T be the set of all such τ. If τ1; τ2∈T
are neighboring m-simplices sharing a common (m-1)-simplex η,
then we have

ψðUτ1 ;UμÞ−1ψðUτ1 ;UsÞ ¼ ðωðnηÞψðUτ2 ;UμÞÞ−1ωðnηÞψ ðUτ2 ;UsÞ
¼ ψ ðUτ2 ;UμÞ−1ψ ðUτ2 ;UsÞ

Since any two elements in T can be connected by a chain of
neighboring elements of T, the above equality extends to all
τ1; τ2∈T . □

Thus, starting with a closed discrete Cn-valued dual one-form
ω, we obtain a valid trivialization of a vector bundle. It consists of
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the collection of all charts Us, s∈K covering M together with the
specification of all transition functions ψðUs;UμÞ which are con-
stant on Us∩Uμ. As discussed at the end of the previous section, the
bundle can be equipped with a flat connection having locally
trivial holonomy around each simplex. Nevertheless, non-trivial
global holonomy can arise.
7. Finite element discretization

Let ∇ be a connection such as d or dω. The general outline for
applying a finite element computation to the Laplacian eigenvalue
problem ∇n∇f ¼ λf is obtained in two steps: first, taking the L2

inner product with an arbitrary test function φ one obtains the
equation

ð∇f ;∇φÞ ¼ λðf ;φÞ ∀φ:

This weak variational formulation is discretized by writing the
unknown function f as a linear combination f ¼ f 1φ1 þ⋯f NφN of a
collection ðφkÞ of suitable basis functions and solving the discrete
generalized eigenvalue problem Af ¼ λBf , where A and B are N�N
matrices and f ¼ ðf kÞ is a vector of dimension N. The entries of the
matrices are computed by evaluating the inner products

Aij ¼
Z
M
〈∇φi;∇φj〉 dM; Bij ¼

Z
M
〈φi;φj〉dM:

Using the connection ∇¼ d, we obtain the classical finite element
discretization of the Laplace–Beltrami operator.

We choose the finite element basis functions φi to be poly-
nomial basis functions with supports given by the charts Us, cf.
Section 5. Any such domain decomposes into m-simplices Uτ

which are diffeomorphic to an m-dimensional reference simplex
R. For concreteness, let R be given in the ðu1;…;umÞ-plane with
vertices v0 ¼ 0 and vi¼ei for 1≤ i≤m, where ei is the ith Cartesian
basis vector. This is just the simplex enclosed by the coordinate
planes and the plane u1 þ⋯þ um ¼ 1. Then linear scalar basis
functions on R are given by

ϕ0 ¼ 1−∑
i
ui; ϕ1 ¼ u1; ⋯ ϕm ¼ um:

Similarly higher-order polynomials are specified for high accuracy
computations, see e.g. [49]. There are different types of basis
functions, depending on the support. The most familiar are the so-
called vertex basis functions. They are associated with a support of
the form Us for a vertex s. These are the only kind of basis
functions arising if one uses linear finite elements. Typically they
take the value one at s and fall off to vanish on the boundary ∂Us.
In the higher-order case, one additionally considers functions
naturally associated to supports Us for j-simplices s with
1≤ j≤m, see Fig. 2a.

In order to evaluate the inner products for the matrices A and B,
we need to perform integration. This can be done by summing
contributions of individual m-simplices Uτ contained in the inter-
section of the supports of the two basis functions involved. For
example let φi and φj have supports Us and Uμ respectively. Then

Aij ¼ ∑
Uτ⊂Us∩Uμ

Z
Uτ

〈ψðUτ ;UsÞ∇φi;ψðUτ ;UμÞ∇φj〉 dUτ ;

Bij ¼ ∑
Uτ⊂Us∩Uμ

Z
Uτ

〈ψðUτ;UsÞφi;ψ ðUτ ;UμÞφj〉 dUτ:

Any Uτ can be parametrized over the reference simplex R, giving
rise to concrete expressions for the basis functions φi;φj and their
differentials in terms of the polynomials ϕk, the volume element
dUτ and the metric tensor needed to evaluate the scalar products.
Therefore, all computations are ultimately reduced to a numerical
integration problem over R.
8. Determining the possible line bundles

In order to determine how many different flat complex line
bundles are available one needs to know the cohomology group
H1(M,G) with coefficients in the Abelian group G¼ Uð1Þ⊂Cn. If one
restricts G to the subgroup {71}, then the group H1ðM;Z2Þ counts
the real line bundles, see e.g. [50] and the examples in [34].

Within literature there are several algorithms for computing
homology groups, see e.g [51,52], with co-homology being con-
sidered more difficult [53]. However H1(M,G) is not easily obtained
in practice, since most currently available algorithms and software
packages are not designed for this task. For example the package
Chomp [54], which is state of the art within publicly available
codes, focuses on computing homology (not co-homology) only
using Z or Zn coefficients. It is based on elementary reductions and
collapses, see [55] for more background.

Theory suggests to apply the universal coefficient theorem for
cohomology [46] to obtain the exact sequence

0-ExtðH0ðM;ZÞ;GÞ-H1ðM;GÞ-HomðH1ðM;ZÞ;GÞ-0

As ExtðH0ðM;ZÞ;GÞ ¼ ExtðZ;GÞ ¼ 0, it follows that H1ðM;GÞ is iso-
morphic to HomðH1ðM;ZÞ;GÞ. Furthermore the classification the-
orem of finitely generated Abelian groups implies that H1ðM;ZÞ
decomposes into H1ðM;ZÞ ¼Zn⊕Zn1⊕⋯Zns , i.e. into a free cyclic
subgroup of rank n (where n is commonly known as the first Betti
number) and a torsion subgroup in which every element has finite
order. To determine H1(M,G) one has to count the possibilities of
mapping each generator of H1ðM;ZÞ to an element of G while
respecting the order relations: while a generator 1∈Z can be
mapped arbitrarily, leading to essentially G possibilities, a gen-
erator 1∈Zk has to be mapped to an element α∈G with αk ¼ 1, i.e. to
one of the kth roots of unity. These considerations give a
computable answer to the question of how many possibilities
there are to construct a line bundle with a flat unitary connection.
For example, if M is an orientable closed surface of genus g then
H1ðM;ZÞ ¼Z2g and the flat bundles can be parametrized by
elements of H1ðM;GÞ ¼ G2g .

In order to actually compute a discrete G-valued dual one-form
ω consider the following sequence of group homomorphisms:

Hm−1ðK; ∂K ;CÞ-H1ðnK;CÞ-H1ðnK ;GÞ
where we take C to be Z or Zn for some n. Note that the first group
is the ðm−1Þ-st relative homology group that can be computed via
[54]. The first map is the isomorphism implied by Poincaré–
Lefschetz duality, cf. [46]. This map is available for any Abelian
group C if M is orientable. If M is not orientable, the isomorphism
still holds for C ¼Z2. The second map in the above sequence is
induced by a given group homomorphism C-G.

In the examples discussed later in this paper, we focus on real
line bundles, taking G to be f71g, C ¼ Z and the group homo-
morphism C-G to be given by z↦ð−1Þz .
9. Algorithm summary

Let K be a given simplicial complex describing an m-dimen-
sional manifold. Our algorithm can be summarized as follows:
Stage 1:
 Compute a set of generators γi for Hm−1ðK ; ∂K ;CÞ where
we take C to be Z2 if the manifold is not orientable. If it is
orientable we choose C to be Z or another finite cyclic
group Zp. The γi can be interpreted as generators of
H1ðnK;CÞ.
Stage 2:
 Use a combination of the γi and a group homomorphism
C-G to create a G-valued discrete dual one-form ω.
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Stage 3:
Fig. 3. Rep
(c) figure e
Use ω to construct a line bundle structure by computing
the transition maps ψ ¼ fψðUτ;UsÞg as described in
Section 6.
Stage 4:
 Solve the Laplacian eigenvalue problem on the con-
structed bundle using the finite element approach
described in Section 7.
Stage 5:
 Extract information from the spectrum and eigenfunc-
tions. In this paper we have focused on extracting the
zero set of the eigenfunction corresponding to the lowest
eigenvalue.
10. Computational examples and discussion

We have illuminated the constructive nature of our approach by
implementing the complete process in C++ and applying it to
various models of different topological complexity. Some of those
models have been taken from the AIM@Shape Repository. The
tetrahedrizations have been computed using Tetgen [56]. For solving
the sparse systems we have relied upon the SLEPc library [57].

10.1. Knot and link complements

To create examples of topologically non-trivial three-manifolds
with boundary we construct knot and link complements. A knot is
resentation of knots in terms of knot projections. (a) Unknot, (b) trefoil,
ight, (d) Hopf link.

Fig. 4. Top: complement of the unknot within a bo
an embedding of a circle into space, whereas a link is an
embedding of multiple circles. Pictorially knots and links are often
represented in terms of a planar projection, such as those shown
in Fig. 3. While any knot itself is homeomorphic to the standard
circle, the complement of the knot can be topologically quite
complicated.

For our purposes we consider knots and links to be thickened
by some amount by sweeping a small circle around them, yielding
tubular objects O. We construct complements of our tubular knots
and links within some larger, yet bounded object H, typically a box.
In each example the resulting bounded three-manifold M¼H\O is
the base domain to which we apply our computations.

An interesting property of knots is that the first fundamental
group of the complement can be given in terms of a so-called
Wirtinger presentation deduced from a knot-projection [58]. From
this presentation it is easy to show that the abelianization of the
first fundamental group, which is the first homology group, has
rank one. The discussion of Section 8 implies the first cohomology
group H1ðM;Z2Þ of our knot complements to be spanned by one
generator γ. We apply our algorithm to the bundle constructed
from the discrete dual one-form ω¼ expðiπγÞ ¼ ð−1Þγ , computing
the first eigenfunction of the Laplacian on this bundle. Let us
denote by S its zero-set. In general S is a regular surface, which we
will assume in the following discussion. It can be shown that S
represents a class of the relative homology group Hm−1ðM; ∂M;Z2Þ,
see [34].

As a first example consider the complement of the unknot
within a box. The upper part of Fig. 4 shows the tubular neighbor-
hood of the unknot, which is an ordinary torus, colored in black,
while the enclosing box is rendered in a semi-transparent way. The
resulting surface S is shown in red. Depending on the relative size of
the torus within the box, S can switch from being an inner
membrane to an outer one. Note however, that both are homo-
logous modulo the boundary of M and valid representatives of the
single non-trivial class in H2ðM; ∂M;Z2Þ.
x. Bottom: two different trefoil complements.



Fig. 5. Complement of a Hopf link within an enclosing ball (not shown).
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The lower part of Fig. 4 shows the result for two different
variants of the trefoil knot complement. The two cases differ as
one trefoil has been elongated in the vertical direction. Although
the two resulting zero surfaces are homologous modulo the
boundary of M using Z2 coefficients, they differ in a topologically
remarkable way. The surface shown in the lower right picture is an
example of a surface commonly known as a Seifert surface of the
trefoil knot. Remarkably Seifert surfaces do exist in general and
can be constructed topologically directly from any knot projection
using an algorithm given by Seifert [40]. It is however much more
difficult to explicitly construct a nice geometrical embedding.
Seifert surfaces play an important role in knot theory, giving for
example rise to the notion of genus gK of a knot K, which is the
smallest number that is the genus of a Seifert surface for K. In
contrast, the surface on the lower left in Fig. 4 is not-orientable. It
is topologically a band with three half-turns that is homeomorphic
to a Möbius strip.

Note that such non-orientable zero sets could never have been
obtained from considering ordinary functions, i.e. sections of the
trivial real line bundle. This follows from the fact that ordinary
functions yield two-sided zero sets S⊂M and two-sidedness
together with the orientability of M imply the orientability of S,
cf. [45]. To summarize the situation: if S is orientable it can be
thought of as a Seifert surface for the knot. However, our approach
can yield non-orientable analogs of Seifert surfaces, too.

Fig. 5 illustrates how our method is applied to the complement
of the Hopf link within a larger ball. The cohomology group
H1ðM;Z2Þ has rank two and contains four different classes. The
sub-figure on the upper left shows a discrete dual one-form, which
represents one of those four classes. The first eigenfunction on the
line bundle induced by that class yields the surface shown in the
lower left and also rendered in the right sub-figure.

Further examples for zero surfaces generated by our method
applied to knot and link complements are shown in Fig. 6.

Our method also deals with more commonly considered
models such as those shown in Fig. 7. The solid cat model shown
on the left has the topology of a solid torus, thus possessing a
single non-trivial real line bundle. The zero set S is a surface
cutting the tail depicted in the leftmost sub-figure. For the
complement of the solid cat model within a larger box one obtains
a membrane, similar to the knot complement examples. The chair
and statue models, also depicted in Fig. 7, have a more compli-
cated topology. For the chair model we applied our method to the
complement within a larger box using a line bundle whose
connection has a holonomy of −1 for those loops linking one of
the two large holes in the backrest. This results in S consisting of
two red membranes appearing as a kind of padding in the
backrest. Finally, we also applied our method to the solid statue
on the right which appears in a wire-frame rendering. For this
complex high-genus model we have chosen one of the several real
line bundles and visualized the resulting surface S.

Similarly to the ordinary Laplacian, the low-frequency eigen-
functions of the connection Laplacians are insensitive to noise.
This is illustrated in Fig. 8 where we have applied random noise to
a solid model. Note that the resulting cut surface remains stable.
The same can be said with respect to varying the resolution of the
volumetric discretization.

10.2. Mean curvature of the zero-sets

The zero surfaces computed by our method generally align well
to symmetries of M and are reminiscent of minimal surfaces. Of
course these are not minimal surfaces in general. In fact, the mean
curvature of a level set S for a function f can be expressed as
H¼ −div N, where N¼ ∇f =j∇f j is the normal vector field along S,
see e.g. [44]. Since in our case S is the zero set of the first
eigenfunction f of Δ, we have for any x∈S that Δf ðxÞ ¼ λf ðxÞ ¼ 0,
yielding

H¼ ∂N j∇f j
j∇f j :

The length of ∇f , with f being the first eigenfunction, usually varies
slowly in a neighborhood of the surface. Thus, according to the
above equation, the mean curvature of S tends to be small.

10.3. Spanning surfaces induced by harmonic one-forms

In this section we compare our work to related considerations
concerning level sets of harmonic one-forms. These have been
subject of research in the context of electromagnetic modeling, see
e.g. [59]. As a simple example, consider a loop of wire in space,
possibly knotted, carrying a constant current I. Since the magnetic
field H in the space exterior to the wire is known to be irrotational
in this situation, i.e. satisfying ∇� H ¼ 0, one can write locally
H¼ ∇ϕ for some scalar potential ϕ. However, there is no global
potential function ϕ satisfying this relation, since for a loop L
enclosing the wire we have by Amperè's law

∮LH dl¼ I:

In order to make ϕ a well-defined single-valued function, one is
forced to introduce a so-called cut surface into the computation,
such that any loop linking the current has to intersect it.

In [42,60], Kotiuga rigorously defined cuts in this context and
proposed a method for calculating those using a finite element
approach. This approach basically amounts to solving a scalar
Poisson equation yielding a harmonic real-valued function f that
has a discontinuity of 2π along a previously computed discrete
relative homology generator. The differential df is closed (since
d df¼0) and co-closed (since dndf ¼Δf ¼ 0) and therefore a
harmonic one–form. The function g : ¼ expðif Þ is a continuous
well-defined function that maps into the circle S1. For almost all
φ∈S1 the preimage Sφ ¼ g−1ðφÞ yields a suitable smooth cut.

We have implemented this method in order to compare the
cuts Sφ with our spanning surfaces S. An example showing Sφ for
various φ is depicted in Fig. 9, where a solid double torus has been
carved out from a cube.

Both methods can be understood in the context of providing
well-behaving surfaces contained in the homology classes of the



Fig. 6. More examples of knot and link complements.
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Fig. 8. Influence of noise.
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initial generators required for the computation. While our method
yields a unique characteristic representative for the considered
homology class based on Z2 coefficients, the one-form based
approach yields a one-parameter family of orientable representa-
tives for the considered class using Z coefficients. In this family no
unique member is distinguished canonically.

10.4. Complements in closed manifolds

In the context of shape analysis one is interested in character-
istic features of objects that are invariant or at least depend as
little as possible on issues not pertaining the geometry or topology
of the shape. As discussed, the Laplace–Beltrami operator and the
generalized Bochner Laplacians are natural tools in this context,
yielding robust features invariant under isometries.

In some of our previous examples we have constructed objects
M by carving out some object O from a larger object H sitting
inside three-dimensional Euclidean space, i.e. M¼H\ϕðOÞ, where
ϕ : O-H⊂R3 is a map embedding O into H. Our investigations in
this context should be understood as examining the object M and
not O and thereby yielding features characteristic for M.

However, one might be interested in studying a given object O
indirectly by applying a spectral analysis to the complement object
M. In this case one should care to minimize the effect of the
embedding. More generally, consider two different embeddings
ϕ1;ϕ2 : O-H of an object O into a space H. If ϕ2○ϕ−1

1 : ϕ1ðOÞ-ϕ2ðOÞ
can be extended to an isometry of H, then the complements
Mi ¼H\ϕðOiÞ, are isometric and a spectral analysis for M1 and M2

yields the same result.
As an example for the influence of embedding, consider again a

tubular unknot O placed within a larger box H at two different
positions, cf. Fig. 10. The second is placed closer to the boundary of
the box. Computing the zero set of the first eigenfunction as before
yields the two red membranes. Note that the membrane for the
second embedding is bent a little towards the upper boundary of
the box. This is due to the interaction of the outer boundary with
O. This example suggests to consider an embedding within a
compact three-dimensional manifold H without boundary.

A classical approach to construct such a compact manifold is to
choose U to be some larger space, while choosing Γ to be a
subgroup of the group IsoðUÞ of isometries of U. With certain
restrictions on Γ, the quotient space H ¼U=Γ becomes a manifold
that inherits the geometry of U. Furthermore U is the universal
covering space of H and Γ is isomorphic to the first fundamental
group of H. The isometries of H are given by the centralizer of Γ in
IsoðUÞ.

Resuming the previous example, imagine identifying opposite
faces of the cube as to obtain the three-torus H ¼ T3 ¼ R3=Γ, where
Γ is the group of translations generating a cubical lattice in R3.
This is a compact homogeneous three-manifold with an Euclidean
metric. We have extended our method to deal with such manifolds
Fig. 7. Examples for characteristic surfaces (shown in red) for different objects. (For inter
web version of this article.)
being described by appropriate gluing rules. Repeating the com-
putation above yields the membrane shown on the right of Fig. 10.
The result appears flat, as expected. In fact positioning the unknot
anywhere within T3 yields such a flat membrane as there is no
interfering boundary affecting the result. Moreover we know from
the above discussion, that the isometries of T3 consist of all
translations of R3 modulo the lattice Γ. Therefore, theory predicts
that any two embeddings of an object into T3 differing by an
Euclidean motion result in isometric manifolds. This is confirmed
pretation of the references to color in this figure legend, the reader is referred to the



Fig. 10. Complements of tubular unknots. Left and middle: within a cube. Right: within T3. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Fig. 11. Comparison of eigenvalue spectra for two different embeddings ϕ1, ϕ2 within T3 using linear and quadratic FEM.

Fig. 9. Examples of iso surfaces induced by harmonic one-forms.
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Fig. 12. Model of a human hand carved out from the Seifert–Weber space. Our
method yields a spanning surface clamped in between the thumb and forefinger.
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in practice as follows. Consider two embeddings (ϕ1 and ϕ2) of O
within T3 analogous to the embeddings shown in Fig 10. Fig. 11
compares the resulting eigenvalue spectra. The left part shows a
plot of the first 100 eigenvalues for both embeddings using linear
(p¼1) and quadratic (p¼2) finite elements. Note that the resulting
spectra for p¼1 barely differ, as expected. Yet, a closer look at their
difference as shown on the right reveals discrepancies that
increase with the eigenvalue index. These disappear for quadratic
elements, where the resulting difference curve nearly vanishes.

Besides the three-dimensional torus, other Euclidean compact
closed manifolds may be constructed in a similar fashion. There
are essentially ten different classes, see [61] for a discussion.
However, there are also gluing rules giving rise to manifolds that
cannot be equipped with an Euclidean metric. For example gluing
opposite faces of a dodecahedron with a 5/10 twist yields the so-
called Seifert–Weber space having a hyperbolic metric. Using
instead a 3/10 twist yields the Poincaré Dodecahedral space
(PDS) having an elliptic metric. The SWS has homology group
H1ðM;ZÞ ¼Z3

5 while the PDS is a so-called homology sphere, which
means that it has the same homology groups as the sphere S3, in
particular H1¼0. These constructions have been introduced in
[62]. More recently they have attracted interest of cosmologists
seeking to determine the shape of our universe by studying the
cosmic microwave background radiation. See [63] for an introduc-
tion into this topic.

Without going into details, our method can deal with such
curved background geometries. Fig. 12 shows an example invol-
ving the complement of an object within the Seifert–Weber space
which is depicted within the Poincaré model of hyperbolic space.
11. Conclusion

Based on the ideas introduced in [34,35] we extended the
theory and algorithms to construct a line bundle structure for a
manifold represented by a simplicial complex. This structure is
explicitly described in terms of charts that are naturally used as
supports for finite element basis functions and corresponding
bundle transition functions. This allows us to solve partial differ-
ential equations on flat line bundles.

Our approach allows to compute the spectral decomposition of
Laplacians acting on sections of flat line bundles over three-
dimensional manifolds of complex shape and topology. These
include compact manifolds with boundary equipped with an
arbitrary Riemannian metric. We have computed smooth well-
behaved isometry-invariant homology generators, that are robust
to noise and mesh discretization. Our examples show spanning
surfaces for various geometries including Seifert surfaces and their
non-orientable counterparts for knot complements.

Focusing on the latter application, the considered examples
have involved flat real line bundles, whereas the presented
approach easily allows for complex flat line bundles, too. Those
allow for a larger space of flat connections and for extracting
features in an analogous way as demonstrated in [35] for the two-
dimensional case. The approach pursued in this paper suggests to
explore this direction further by investigating and visualizing
complex eigenfunctions on three-manifolds.

Considering the three-dimensional nature of the results we
have presented, one might look into adapting the methods to deal
more directly with voxel-based data common in applications.
Furthermore theory suggests that one might consider bundles of
higher rank. These allow for non-Abelian structure groups, such as
the group SOð3Þ of rotations acting on R3 or SUð2Þ of unitary
matrices operating on C2 being related to quaternions. This is an
interesting topic for further research.
References

[1] Rosenberg S. The Laplacian on a Riemannian manifold: an introduction to
analysis on manifolds. Cambridge University Press; 1997.

[2] Bobenko AI, Springborn BA. A discrete Laplace–Beltrami operator for simplicial
surfaces. Dis Comput Geomet 2007;38(4):740–56.

[3] Pinkall U, Juni SD, Polthier K. Computing discrete minimal surfaces and their
conjugates. Exp Math 1993;2:15–36.

[4] Wardetzky M, Mathur S, Kälberer F, Grinspun E. Discrete laplace operators: no
free lunch. In: Proceedings of the eurographics symposium on geometry
processing; 2007. p. 33–7.

[5] Reuter M, Biasotti S, Giorgi D, Patanè G, Spagnuolo M. Discrete Laplace
Beltrami operators for shape analysis and segmentation. Comput Graph
2009;33(3):381–90.

[6] Dey TK, Ranjan P, Wang Y. Convergence, stability, and discrete approximation
of Laplace spectra. In: ACM-SIAM symposium on discrete algorithms; 2010. p.
650–63.

[7] Reuter M, Wolter F-E, Peinecke N. Laplace–Beltrami spectra as shape DNA of
surfaces and solids. Computer-Aided Des 2006;38(4):342–66.

[8] Peinecke N, Wolter F-E, Reuter M. Laplace-spectra as fingerprints for image
recognition. Computer-Aided Des 2007;39(6):460–76.

[9] Peinecke N, Wolter F-E. Mass density Laplace-spectra for image recognition.
In: Cyberworlds, IEEE; 2007. p. 409–16.

[10] Wolter F-E, Friese K-I. Local and global geometric methods for analysis
interrogation, reconstruction, modification and design of shape. In: Computer
graphics international; 2000. p. 137–51. Also available as Welfenlab report No.
3. ISSN 1866-7996.

[11] Wolter F-E, Howind T, Altschaffel T, Reuter M, Peinecke N. Laplace-Spektra -
Anwendungen in Gestalt- und Bildkognition, available as Welfenlab Report No.
7. ISSN 1866–7996.

[12] Wolter F-E, Peinecke N, Reuter M. Verfahren zur Charakterisierung von
Objekten/a method for the characterization of objects (surfaces, solids and
images), German Patent Application; June 2005 (pending). US Patent US2009/
0169050 A1; July 2, 2009, 2006.

[13] Wolter F-E, Blanke P, Thielhelm H, Vais A. Computational differential geometry
contributions of the Welfenlab to GRK 615. In: Modelling, simulation and
software concepts for scientific-technological problems, LNACM, vol. 57; 2011.
Springer, p. 211–36.

[14] Vallet B, Lévy B. Spectral geometry processing with manifold harmonics.
Comput Graph Forum 2008;27(2):251–60.

[15] Dong S, Bremer PT, Garland M, Pascucci V, Hart JC. Spectral surface quad-
rangulation. ACM TOG 2006;25(3):1057–66.

[16] Tong Y, Alliez P, Cohen-Steiner D, Desbrun M. Designing quadrangulations
with discrete harmonic forms. In: Proceedings of the eurographics symposium
on geometry processing; 2006. p. 201–10.

[17] Kälberer F, Nieser M, Polthier K. QuadCover-surface parameterization using
branched coverings. Comput Graph Forum 2007;26(3):375–84.

http://refhub.elsevier.com/S0097-8493(13)00087-3/sbref1
http://refhub.elsevier.com/S0097-8493(13)00087-3/sbref1
http://refhub.elsevier.com/S0097-8493(13)00087-3/sbref2
http://refhub.elsevier.com/S0097-8493(13)00087-3/sbref2
http://refhub.elsevier.com/S0097-8493(13)00087-3/sbref3
http://refhub.elsevier.com/S0097-8493(13)00087-3/sbref3
http://refhub.elsevier.com/S0097-8493(13)00087-3/othref0005
http://refhub.elsevier.com/S0097-8493(13)00087-3/othref0005
http://refhub.elsevier.com/S0097-8493(13)00087-3/othref0005
http://refhub.elsevier.com/S0097-8493(13)00087-3/sbref5
http://refhub.elsevier.com/S0097-8493(13)00087-3/sbref5
http://refhub.elsevier.com/S0097-8493(13)00087-3/sbref5
http://refhub.elsevier.com/S0097-8493(13)00087-3/othref0010
http://refhub.elsevier.com/S0097-8493(13)00087-3/othref0010
http://refhub.elsevier.com/S0097-8493(13)00087-3/othref0010
http://refhub.elsevier.com/S0097-8493(13)00087-3/sbref7
http://refhub.elsevier.com/S0097-8493(13)00087-3/sbref7
http://refhub.elsevier.com/S0097-8493(13)00087-3/sbref8
http://refhub.elsevier.com/S0097-8493(13)00087-3/sbref8
http://refhub.elsevier.com/S0097-8493(13)00087-3/othref0015
http://refhub.elsevier.com/S0097-8493(13)00087-3/othref0015
http://refhub.elsevier.com/S0097-8493(13)00087-3/othref0020
http://refhub.elsevier.com/S0097-8493(13)00087-3/othref0020
http://refhub.elsevier.com/S0097-8493(13)00087-3/othref0020
http://refhub.elsevier.com/S0097-8493(13)00087-3/othref0020
http://refhub.elsevier.com/S0097-8493(13)00087-3/othref0025
http://refhub.elsevier.com/S0097-8493(13)00087-3/othref0025
http://refhub.elsevier.com/S0097-8493(13)00087-3/othref0025
http://refhub.elsevier.com/S0097-8493(13)00087-3/othref0030
http://refhub.elsevier.com/S0097-8493(13)00087-3/othref0030
http://refhub.elsevier.com/S0097-8493(13)00087-3/othref0030
http://refhub.elsevier.com/S0097-8493(13)00087-3/othref0030
http://refhub.elsevier.com/S0097-8493(13)00087-3/othref0035
http://refhub.elsevier.com/S0097-8493(13)00087-3/othref0035
http://refhub.elsevier.com/S0097-8493(13)00087-3/othref0035
http://refhub.elsevier.com/S0097-8493(13)00087-3/othref0035
http://refhub.elsevier.com/S0097-8493(13)00087-3/sbref14
http://refhub.elsevier.com/S0097-8493(13)00087-3/sbref14
http://refhub.elsevier.com/S0097-8493(13)00087-3/sbref15
http://refhub.elsevier.com/S0097-8493(13)00087-3/sbref15
http://refhub.elsevier.com/S0097-8493(13)00087-3/othref0040
http://refhub.elsevier.com/S0097-8493(13)00087-3/othref0040
http://refhub.elsevier.com/S0097-8493(13)00087-3/othref0040
http://refhub.elsevier.com/S0097-8493(13)00087-3/sbref17
http://refhub.elsevier.com/S0097-8493(13)00087-3/sbref17


A. Vais et al. / Computers & Graphics 37 (2013) 718–729 729
[18] Bommes D, Zimmer H, Kobbelt L. Mixed-integer quadrangulation. ACM TOG
2009;28(3):77.

[19] Botsch M, Sorkine O. On linear variational surface deformation methods. IEEE
Trans Visual Comput Graph 2008;14(1):213–30.

[20] Rustamov RM. Laplace–Beltrami eigenfunctions for deformation invariant
shape representation. In: Belyaev A, Garland M, editors. Proceedings of the
eurographics symposium on geometry processing; 2007. p. 225–33.

[21] Sun J, Ovsjanikov M, Guibas L. A concise and provably informative multi-scale
signature based on heat diffusion. Comput Graph Forum 2009;28(5):1383–92.

[22] Bronstein MM, Kokkinos I. Scale-invariant heat kernel signatures for non-rigid
shape recognition. In: Conference on computer vision and pattern recognition,
IEEE; 2010. p. 1704–11.

[23] Ruggeri M, Patane G, Spagnuolo M, Saupe D. Spectral-driven isometry-
invariant matching of 3D shapes. J Comput Vis 2010;89(2):248–65.

[24] Mémoli F. Spectral Gromov–Wasserstein distances for shape matching. In:
International conference on computer vision; 2009. p. 256–63.

[25] Reuter M. Hierarchical shape segmentation and registration via topological
features of Laplace–Beltrami eigenfunctions. J Comput Vis 2010;89
(2):287–308.

[26] De Silva V, Morozov D, Vejdemo-Johansson M. Persistent cohomology and
circular coordinates. Dis Comput Geomet 2011;45(4):737–59.

[27] Reuter M, Wolter F-E, Shenton M, Niethammer M. Laplace–Beltrami eigenva-
lues and topological features of eigenfunctions for statistical shape analysis.
Comput Aided Des 2009;41(10):739–55.

[28] Niethammer M, Reuter M, Wolter F-E, Bouix S, Peinecke N, Koo M-S, et al.
Global medical shape analysis using the Laplace–Beltrami spectrum. In:
MICCAI; 2007. Springer. p. 850–7.

[29] Zhang H, Van Kaick O, Dyer R. Spectral mesh processing. Comput Graph Forum
2010;29(6):1865–94.

[30] Wardetzky M, Bergou M, Harmon D, Zorin D, Grinspun E. Discrete quadratic
curvature energies. Comput Aided Geomet Des 2007;24(8):499–518.

[31] Hildebrandt K, Schulz C, von Tycowicz C, Polthier K. Eigenmodes of surface
energies for shape analysis. In: Mourrain B, Schaefer S, Xu G, editors.
Proceedings of the geometric modeling and processing. Lecture notes in
computer science, vol. 6130; 2010. Springer. p. 296–314.

[32] Zobel V, Reininghaus J, Hotz I. Generalized heat Kernel signatures. In:
International conference on computer graphics, visualization and computer
vision; 2011. p. 93–100.

[33] Crane K, Pinkall U, Schröder P. Spin transformations of discrete surfaces. ACM
TOG 2011;30:104.

[34] Vais A, Berger B, Wolter F-E. Spectral computations on nontrivial line bundles.
Comput Graph 2012;36(5):398–409.

[35] Vais A, Berger B, Wolter F-E. Complex line bundle Laplacians. Vis Comput
2012;28(8):1–13.

[36] Singer A, Wu H-T. Vector diffusion maps and the connection Laplacian.
Commun Pure Appl Math 2012;65(8):1067–144.

[37] Aurich R, Steiner F. Periodic-orbit sum rules for the Hadamard–Gutzwiller
model. Phys D: Nonlin Phenom 1989;39(2–3):169–93.
[38] Maintrot M. Finite element method on Riemann surfaces and applications to
the Laplacian spectrum. PhD thesis. EPFL; 2012.

[39] Pansart JP. Numerical calculation of the lowest eigenmodes of the Laplacian in
compact orientable 3-dimensional hyperbolic spaces; 2008. p. 27 arXiv0809.
0591.

[40] Seifert H. Über das Geschlecht von Knoten. Math Ann 1935;110(1):571–92.
[41] van Wijk J, Cohen A. Visualization of Seifert surfaces. IEEE Trans Visual Comput

Graph 2006;12(4):485–96.
[42] Kotiuga PR. An algorithm to make cuts for magnetic scalar potentials in

tetrahedral meshes based on the finite element method. IEEE Trans Magn
1989;25(5):4129–31.

[43] Crane K, Desbrun M, Schröder P. Trivial connections on discrete surfaces.
Comput Graph Forum (SGP) 2010;29(5):1525–33.

[44] do Carmo MP. Riemannian geometry. Boston: Birkhäuser; 1992.
[45] Frankel T. Geometry of physics. Cambridge University Press; 2003.
[46] Hatcher A. Algebraic topology. Cambridge University Press; 2002.
[47] Desbrun M, Kanso E, Tong Y. Discrete differential forms for computational

modeling. Dis Differ Geomet: Appl Introd 2008:287–324.
[48] Edelsbrunner H, Harer J. Computational topology. An introduction. American

Mathematical Society; 2010.
[49] Solin P. Partial differential equations and the finite element method. John

Wiley & Sons; 2005.
[50] Murdoch TA. Twisted-calibrations and the cone on the veronese surface. PhD

thesis. Rice University; 1988.
[51] Dey TK, Guha S. Computing homology groups of simplicial complexes in R3.

JACM 1998;45(2):266–87.
[52] Boltcheva D, Canino D, Merino Aceituno S, Léon J-C, De Floriani L, Hétroy F. An

iterative algorithm for homology computation on simplicial shapes.
Computer-Aided Des 2011;43(11):1457–67.

[53] Dlotko P, Specogna R. Physics inspired algorithms for (co)homology computa-
tion; December 2012. p. 1–18 arXiv1212.1360.

[54] CHOMP—computational homology project; 2012. URL 〈http://chomp.rutgers.
edu/〉.

[55] Kaczynski T, Mischaikow K, Mrozek M. Computational homology. Applied
mathematical sciences, vol. 157. Springer-Verlag; 2004.

[56] TetGen: a quality tetrahedral mesh generator and three-dimensional Delaunay
triangulator; 2011. URL 〈http://wias-berlin.de/software/tetgen/.

[57] Hernandez V, Roman JE, Vidal V. SLEPc: a scalable and flexible toolkit for the
solution of eigenvalue problems. ACM Trans Math Software 2005;31
(3):351–62.

[58] Stillwell J. Classical topology and combinatorial group theory. Springer; 1993.
[59] Gross PW, Kotiuga PR. Electromagnetic theory and computation: a topological

approach. Cambridge University Press; 2004.
[60] Kotiuga PR. On making cuts for magnetic scalar potentials in multiply

connected regions. J Appl Phys 1987;61(8):3916.
[61] Conway JH, Rossetti JP. Describing the Platycosms arXivmath/0311476.
[62] Weber C, Seifert H. Die beiden Dodekaederräume. Math Zeitschrift

1933:237–53.
[63] Weeks JR. The shape of space. second ed.CRC Press; 2001.

http://refhub.elsevier.com/S0097-8493(13)00087-3/sbref18
http://refhub.elsevier.com/S0097-8493(13)00087-3/sbref18
http://refhub.elsevier.com/S0097-8493(13)00087-3/sbref19
http://refhub.elsevier.com/S0097-8493(13)00087-3/sbref19
http://refhub.elsevier.com/S0097-8493(13)00087-3/othref0045
http://refhub.elsevier.com/S0097-8493(13)00087-3/othref0045
http://refhub.elsevier.com/S0097-8493(13)00087-3/othref0045
http://refhub.elsevier.com/S0097-8493(13)00087-3/sbref21
http://refhub.elsevier.com/S0097-8493(13)00087-3/sbref21
http://refhub.elsevier.com/S0097-8493(13)00087-3/othref0050
http://refhub.elsevier.com/S0097-8493(13)00087-3/othref0050
http://refhub.elsevier.com/S0097-8493(13)00087-3/othref0050
http://refhub.elsevier.com/S0097-8493(13)00087-3/sbref23
http://refhub.elsevier.com/S0097-8493(13)00087-3/sbref23
http://refhub.elsevier.com/S0097-8493(13)00087-3/othref0055
http://refhub.elsevier.com/S0097-8493(13)00087-3/othref0055
http://refhub.elsevier.com/S0097-8493(13)00087-3/sbref25
http://refhub.elsevier.com/S0097-8493(13)00087-3/sbref25
http://refhub.elsevier.com/S0097-8493(13)00087-3/sbref25
http://refhub.elsevier.com/S0097-8493(13)00087-3/sbref26
http://refhub.elsevier.com/S0097-8493(13)00087-3/sbref26
http://refhub.elsevier.com/S0097-8493(13)00087-3/sbref27
http://refhub.elsevier.com/S0097-8493(13)00087-3/sbref27
http://refhub.elsevier.com/S0097-8493(13)00087-3/sbref27
http://refhub.elsevier.com/S0097-8493(13)00087-3/othref0060
http://refhub.elsevier.com/S0097-8493(13)00087-3/othref0060
http://refhub.elsevier.com/S0097-8493(13)00087-3/othref0060
http://refhub.elsevier.com/S0097-8493(13)00087-3/sbref29
http://refhub.elsevier.com/S0097-8493(13)00087-3/sbref29
http://refhub.elsevier.com/S0097-8493(13)00087-3/sbref30
http://refhub.elsevier.com/S0097-8493(13)00087-3/sbref30
http://refhub.elsevier.com/S0097-8493(13)00087-3/othref0065
http://refhub.elsevier.com/S0097-8493(13)00087-3/othref0065
http://refhub.elsevier.com/S0097-8493(13)00087-3/othref0065
http://refhub.elsevier.com/S0097-8493(13)00087-3/othref0065
http://refhub.elsevier.com/S0097-8493(13)00087-3/othref0070
http://refhub.elsevier.com/S0097-8493(13)00087-3/othref0070
http://refhub.elsevier.com/S0097-8493(13)00087-3/othref0070
http://refhub.elsevier.com/S0097-8493(13)00087-3/sbref33
http://refhub.elsevier.com/S0097-8493(13)00087-3/sbref33
http://refhub.elsevier.com/S0097-8493(13)00087-3/sbref34
http://refhub.elsevier.com/S0097-8493(13)00087-3/sbref34
http://refhub.elsevier.com/S0097-8493(13)00087-3/sbref35
http://refhub.elsevier.com/S0097-8493(13)00087-3/sbref35
http://refhub.elsevier.com/S0097-8493(13)00087-3/sbref36
http://refhub.elsevier.com/S0097-8493(13)00087-3/sbref36
http://refhub.elsevier.com/S0097-8493(13)00087-3/sbref37
http://refhub.elsevier.com/S0097-8493(13)00087-3/sbref37
http://refhub.elsevier.com/S0097-8493(13)00087-3/othref0075
http://refhub.elsevier.com/S0097-8493(13)00087-3/othref0075
http://refhub.elsevier.com/S0097-8493(13)00087-3/othref0080
arXiv0809.0591
arXiv0809.0591
http://refhub.elsevier.com/S0097-8493(13)00087-3/sbref40
http://refhub.elsevier.com/S0097-8493(13)00087-3/sbref41
http://refhub.elsevier.com/S0097-8493(13)00087-3/sbref41
http://refhub.elsevier.com/S0097-8493(13)00087-3/sbref42
http://refhub.elsevier.com/S0097-8493(13)00087-3/sbref42
http://refhub.elsevier.com/S0097-8493(13)00087-3/sbref42
http://refhub.elsevier.com/S0097-8493(13)00087-3/sbref43
http://refhub.elsevier.com/S0097-8493(13)00087-3/sbref43
http://refhub.elsevier.com/S0097-8493(13)00087-3/othref0085
http://refhub.elsevier.com/S0097-8493(13)00087-3/sbref45
http://refhub.elsevier.com/S0097-8493(13)00087-3/sbref46
http://refhub.elsevier.com/S0097-8493(13)00087-3/sbref47
http://refhub.elsevier.com/S0097-8493(13)00087-3/sbref47
http://refhub.elsevier.com/S0097-8493(13)00087-3/othref0090
http://refhub.elsevier.com/S0097-8493(13)00087-3/othref0090
http://refhub.elsevier.com/S0097-8493(13)00087-3/sbref49
http://refhub.elsevier.com/S0097-8493(13)00087-3/sbref49
http://refhub.elsevier.com/S0097-8493(13)00087-3/sbref49
http://refhub.elsevier.com/S0097-8493(13)00087-3/othref0095
http://refhub.elsevier.com/S0097-8493(13)00087-3/othref0095
http://refhub.elsevier.com/S0097-8493(13)00087-3/sbref51
http://refhub.elsevier.com/S0097-8493(13)00087-3/sbref51
http://refhub.elsevier.com/S0097-8493(13)00087-3/sbref51
http://refhub.elsevier.com/S0097-8493(13)00087-3/sbref52
http://refhub.elsevier.com/S0097-8493(13)00087-3/sbref52
http://refhub.elsevier.com/S0097-8493(13)00087-3/sbref52
http://refhub.elsevier.com/S0097-8493(13)00087-3/othref0100
arXiv1212.1360
http://refhub.elsevier.com/S0097-8493(13)00087-3/othref0105
http://chomp.rutgers.edu/
http://chomp.rutgers.edu/
http://refhub.elsevier.com/S0097-8493(13)00087-3/sbref55
http://refhub.elsevier.com/S0097-8493(13)00087-3/sbref55
http://refhub.elsevier.com/S0097-8493(13)00087-3/othref0110
http://refhub.elsevier.com/S0097-8493(13)00087-3/othref0110
http://wias-berlin.de/software/tetgen/
http://refhub.elsevier.com/S0097-8493(13)00087-3/sbref57
http://refhub.elsevier.com/S0097-8493(13)00087-3/sbref57
http://refhub.elsevier.com/S0097-8493(13)00087-3/sbref57
http://refhub.elsevier.com/S0097-8493(13)00087-3/sbref58
http://refhub.elsevier.com/S0097-8493(13)00087-3/sbref59
http://refhub.elsevier.com/S0097-8493(13)00087-3/sbref59
http://refhub.elsevier.com/S0097-8493(13)00087-3/sbref60
http://refhub.elsevier.com/S0097-8493(13)00087-3/sbref60
arXivmath/0311476
http://refhub.elsevier.com/S0097-8493(13)00087-3/sbref62
http://refhub.elsevier.com/S0097-8493(13)00087-3/sbref62
http://refhub.elsevier.com/S0097-8493(13)00087-3/sbref63

	Laplacians on flat line bundles over 3-manifolds
	Introduction and related work
	Contribution
	Basics
	Connections and holonomy
	Vector bundles
	Construction of a line bundle
	Finite element discretization
	Determining the possible line bundles
	Algorithm summary
	Computational examples and discussion
	Knot and link complements
	Mean curvature of the zero-sets
	Spanning surfaces induced by harmonic one-forms
	Complements in closed manifolds

	Conclusion
	References




